Suppr超能文献

基于磁共振图像放射组学的机器学习方法评估胶质母细胞瘤治疗反应:一项探索性研究。

Assessing Glioblastoma Treatment Response Using Machine Learning Approach Based on Magnetic Resonance Images Radiomics: An Exploratory Study.

作者信息

Sadeghinasab Amirreza, Fatahiasl Jafar, Tahmasbi Marziyeh, Razmjoo Sasan, Yousefipour Mohammad

机构信息

Department of Radiologic Technology, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran.

Department of Clinical Oncology and Clinical Research Development Center, Golestan Hospital Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran.

出版信息

Health Sci Rep. 2024 Dec 30;8(1):e70323. doi: 10.1002/hsr2.70323. eCollection 2025 Jan.

Abstract

BACKGROUND AND OBJECTIVES

Assessing treatment response in glioblastoma multiforme (GBM) tumors necessitates developing more objective and quantitative approaches. A machine learning-based approach is presented in this exploratory study for GBM patients' treatment response assessment based on radiomics extracted from magnetic resonance (MR) images.

METHODS

MR images from 77 GBM patients were acquired at two post-surgery stages and preprocessed. From these images, 107 radiomics were extracted from the segmented tumoral cavities. The most informative features for training machine learning (ML) classifiers were identified using the Spearman correlation analysis of features retained by the forward sequential and LASSO algorithms. Applied machine learning models included support vector machine (SVM), random forest (RF), K-nearest neighbors (KNN), AdaBoost, categorical boosting (CatBoost), light gradient boosting machine (LightGBM), extreme gradient boosting (XGBoost), Naïve Bayes (NB) and logistic regression (LR). Ten-fold cross-validation was used to validate the models. Statistical analysis was conducted using SPSS version 27; -value < 0.05 was considered significant.

RESULTS

The Naïve Bayes classifier demonstrated the highest performance among the trained models, achieving an AUC (area under the receiver operating characteristic curve) of 0.86 ± 0.13 when trained on the seven features selected by the forward sequential algorithm and an AUC of 0.84 ± 0.14 when trained using the five features chosen by the LASSO algorithm. The second-best performance was observed with the KNN classifier, which achieved an AUC of 0.80 ± 0.17 when trained on the features selected by the forward sequential algorithm.

CONCLUSION

Findings demonstrated that MRI-based radiomics could be used as distinctive features to train ML models for GBM patients' treatment response assessment. Trained ML classifiers based on these features serve as aiding tools to expedite the quantitative assessment of GBM patients' treatment response besides qualitative evaluations.

摘要

背景与目的

评估多形性胶质母细胞瘤(GBM)肿瘤的治疗反应需要开发更客观、定量的方法。本探索性研究提出了一种基于机器学习的方法,用于基于从磁共振(MR)图像中提取的放射组学评估GBM患者的治疗反应。

方法

在两个术后阶段采集了77例GBM患者的MR图像并进行预处理。从这些图像中,从分割的肿瘤腔中提取了107个放射组学特征。使用前向序贯算法和LASSO算法保留的特征的Spearman相关性分析,确定了用于训练机器学习(ML)分类器的最具信息性的特征。应用的机器学习模型包括支持向量机(SVM)、随机森林(RF)、K近邻(KNN)、AdaBoost、分类提升(CatBoost)、轻梯度提升机(LightGBM)、极端梯度提升(XGBoost)、朴素贝叶斯(NB)和逻辑回归(LR)。采用十折交叉验证来验证模型。使用SPSS 27版进行统计分析;P值<0.05被认为具有统计学意义。

结果

在训练的模型中,朴素贝叶斯分类器表现出最高的性能,在前向序贯算法选择的七个特征上训练时,AUC(受试者操作特征曲线下面积)为0.86±0.13,在使用LASSO算法选择的五个特征训练时,AUC为0.84±0.14。KNN分类器的性能次之,在前向序贯算法选择的特征上训练时,AUC为0.80±0.17。

结论

研究结果表明,基于MRI的放射组学可作为独特特征用于训练ML模型,以评估GBM患者的治疗反应。基于这些特征训练的ML分类器除了定性评估外,还可作为辅助工具加快GBM患者治疗反应的定量评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd99/11683675/f1dd18b1abf7/HSR2-8-e70323-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验