Suppr超能文献

从 3D 到 2D 的随机光浓缩揭示了超弱化学和生物发光。

Stochastic light concentration from 3D to 2D reveals ultraweak chemi- and bioluminescence.

机构信息

Institute for Basic Science-Center for Soft and Living Matter, Ulsan, South Korea.

Department of Physics, University of Connecticut, Storrs, CT, USA.

出版信息

Sci Rep. 2021 May 11;11(1):10050. doi: 10.1038/s41598-021-88091-0.

Abstract

For countless applications in science and technology, light must be concentrated, and concentration is classically achieved with reflective and refractive elements. However, there is so far no efficient way, with a 2D detector, to detect photons produced inside an extended volume with a broad or isotropic angular distribution. Here, with theory and experiment, we propose to stochastically transform and concentrate a volume into a smaller surface, using a high-albedo Ulbricht cavity and a small exit orifice through cavity walls. A 3D gas of photons produced inside the cavity is transformed with a 50% number efficiency into a 2D Lambertian emitting orifice with maximal radiance and a much smaller size. With high-albedo quartz-powder cavity walls ([Formula: see text]), the orifice area is [Formula: see text] times smaller than the walls' area. When coupled to a detectivity-optimized photon-counter ([Formula: see text]) the detection limit is [Formula: see text]. Thanks to this unprecedented sensitivity, we could detect the luminescence produced by the non-catalytic disproportionation of hydrogen peroxide in pure water, which has not been observed so far. We could also detect the ultraweak bioluminescence produced by yeast cells at the onset of their growth. Our work opens new perspectives for studying ultraweak luminescence, and the concept of stochastic 3D/2D conjugation should help design novel light detection methods for large samples or diluted emitters.

摘要

对于科学和技术的无数应用来说,光必须被聚焦,而聚焦通常是通过反射和折射元件来实现的。然而,迄今为止,还没有一种有效的方法可以使用二维探测器来检测具有宽或各向同性角分布的扩展体积内产生的光子。在这里,我们通过理论和实验提出,使用高反照率的 Ulbricht 腔和腔壁上的小孔,可以随机地将一个体积转换并集中到一个较小的表面上。腔内产生的三维光子气体可以以 50%的效率转换为具有最大辐射亮度和更小尺寸的二维朗伯发射孔。当使用高反照率的石英粉末腔壁([公式])时,孔径面积比腔壁面积小[公式]倍。当与探测效率优化的光子计数器([公式])耦合时,检测极限为[公式]。由于这种前所未有的灵敏度,我们可以检测到在纯水中过氧化氢非催化歧化产生的发光,到目前为止还没有观察到这种发光。我们还可以检测到酵母细胞生长起始时产生的超微弱生物发光。我们的工作为研究超微弱发光开辟了新的视角,并且随机 3D/2D 共轭的概念应该有助于设计用于大样本或稀释发射器的新型光检测方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1e9/8113247/dfc78f2aa5aa/41598_2021_88091_Fig1_HTML.jpg

相似文献

6
Cavity theory applications for kilovoltage cellular dosimetry.千伏级细胞剂量测定的腔理论应用
Phys Med Biol. 2017 Jun 7;62(11):4440-4459. doi: 10.1088/1361-6560/aa6a42. Epub 2017 Mar 30.

本文引用的文献

7
Optical biosensors.光学生物传感器
Essays Biochem. 2016 Jun 30;60(1):91-100. doi: 10.1042/EBC20150010.
9
Progress in chemical luminescence-based biosensors: A critical review.化学发光生物传感器的研究进展:综述
Biosens Bioelectron. 2016 Feb 15;76:164-79. doi: 10.1016/j.bios.2015.06.017. Epub 2015 Jun 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验