Suppr超能文献

脑动脉顺应性的三维评估:技术发展、与主动脉脉搏波速度的比较及年龄效应。

Three-dimensional assessment of brain arterial compliance: Technical development, comparison with aortic pulse wave velocity, and age effect.

机构信息

The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

出版信息

Magn Reson Med. 2021 Oct;86(4):1917-1928. doi: 10.1002/mrm.28835. Epub 2021 May 12.

Abstract

PURPOSE

The ability to measure cerebral vascular compliance (VC) is important in the evaluation of vascular diseases. Additionally, quantification of arterial wall pulsation in the brain may be useful for understanding the driving force of the recently discovered glymphatic system. Our goal is to develop an MRI technique to measure VC and arterial wall pulsation in major intracranial vessels.

METHODS

A total of 17 healthy subjects were studied on a 3T MRI system. The technique, called VaCom-PCASL, uses pseudo-continuous arterial spin labeling (PCASL) to obtain pure blood vessel signal, uses a 3D radial acquisition, and applies a golden-angle radial sparse parallel (GRASP) algorithm for image reconstruction. The k-space data were retrospectively sorted into different cardiac phases. The GRASP algorithm allows the reconstruction of 5D (three spatial dimensions, one control/label dimension, and one cardiac-phase dimension) data simultaneously. The proposed technique was optimized in terms of reconstruction parameters and labeling duration. Intracranial VC was compared with aortic pulse wave velocity measured with phase-contrast MRI. Age differences in VC were studied.

RESULTS

The VaCom-PCASL technique using 10 cardiac phases and GRASP sparsity constraints of λ = 0.05 and λ = 0.05 provided the highest contrast-to-noise ratio. A labeling duration of 800 ms was found to yield signals comparable to those of longer duration (P > .2), whereas 400 ms yielded significant overestimation (P < .005). A significant correlation was observed between intracranial VC and aortic pulse wave velocity (r = -0.73, P = .038, N = 8). Vascular compliance in the older group was lower than that in the younger group.

CONCLUSION

The VaCom-PCASL-MRI technique represents a promising approach for noninvasive assessment of arterial stiffness and pulsatility.

摘要

目的

测量脑血管顺应性(VC)的能力在血管疾病的评估中很重要。此外,量化大脑中动脉壁的脉动可能有助于理解最近发现的脑淋巴系统的驱动力。我们的目标是开发一种 MRI 技术来测量颅内主要血管的 VC 和动脉壁脉动。

方法

在 3T MRI 系统上对 17 名健康受试者进行了研究。该技术称为 VaCom-PCASL,使用伪连续动脉自旋标记(PCASL)获得纯血管信号,使用 3D 径向采集,并应用黄金角径向稀疏并行(GRASP)算法进行图像重建。k 空间数据被回顾性地分为不同的心动周期。GRASP 算法允许同时重建 5D(三个空间维度,一个控制/标记维度,一个心动周期维度)数据。该技术在重建参数和标记持续时间方面进行了优化。颅内 VC 与相位对比 MRI 测量的主动脉脉搏波速度进行了比较。研究了 VC 随年龄的差异。

结果

使用 10 个心动周期和 GRASP 稀疏约束 λ = 0.05 和 λ = 0.05 的 VaCom-PCASL 技术提供了最高的对比噪声比。发现 800ms 的标记持续时间可产生与较长持续时间相当的信号(P >.2),而 400ms 则产生显著的高估(P <.005)。颅内 VC 与主动脉脉搏波速度之间存在显著相关性(r = -0.73,P =.038,N = 8)。老年组的血管顺应性低于年轻组。

结论

VaCom-PCASL-MRI 技术代表了一种非侵入性评估动脉僵硬和脉动性的有前途的方法。

相似文献

2
Assessing intracranial vascular compliance using dynamic arterial spin labeling.
Neuroimage. 2016 Jan 1;124(Pt A):433-441. doi: 10.1016/j.neuroimage.2015.09.008. Epub 2015 Sep 10.
5
Improved velocity-selective-inversion arterial spin labeling for cerebral blood flow mapping with 3D acquisition.
Magn Reson Med. 2020 Nov;84(5):2512-2522. doi: 10.1002/mrm.28310. Epub 2020 May 13.
9
Test-retest reliability and reproducibility of long-label pseudo-continuous arterial spin labeling.
Magn Reson Imaging. 2020 Nov;73:111-117. doi: 10.1016/j.mri.2020.07.010. Epub 2020 Jul 25.

引用本文的文献

1
Assessing the Causal Effect of Pulse Pressure on Migraine Risk: A Mendelian Randomization Study.
J Pain Res. 2025 Jun 25;18:3159-3170. doi: 10.2147/JPR.S512795. eCollection 2025.
2
MVP-VSASL: measuring MicroVascular Pulsatility using velocity-selective arterial spin labeling.
Magn Reson Med. 2025 Apr;93(4):1516-1534. doi: 10.1002/mrm.30370. Epub 2024 Dec 29.
3
Assessing Cerebral Microvascular Volumetric Pulsatility with High-Resolution 4D CBV MRI at 7T.
medRxiv. 2024 Sep 5:2024.09.04.24313077. doi: 10.1101/2024.09.04.24313077.
4
Quantification of neurovascular compliance with retrospectively gated phase-contrast MRI.
MAGMA. 2024 Apr;37(2):307-314. doi: 10.1007/s10334-023-01137-4. Epub 2024 Jan 9.
6
Aerobic exercise training reduces cerebrovascular impedance in older adults: a 1-year randomized controlled trial.
J Appl Physiol (1985). 2022 Oct 1;133(4):902-912. doi: 10.1152/japplphysiol.00241.2022. Epub 2022 Sep 15.

本文引用的文献

1
The Brain's Glymphatic System: Current Controversies.
Trends Neurosci. 2020 Jul;43(7):458-466. doi: 10.1016/j.tins.2020.04.003. Epub 2020 May 15.
2
Cerebrospinal fluid influx drives acute ischemic tissue swelling.
Science. 2020 Mar 13;367(6483). doi: 10.1126/science.aax7171. Epub 2020 Jan 30.
3
Highly accelerated vessel-selective arterial spin labeling angiography using sparsity and smoothness constraints.
Magn Reson Med. 2020 Mar;83(3):892-905. doi: 10.1002/mrm.27979. Epub 2019 Sep 19.
4
Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension.
Nat Commun. 2018 Nov 19;9(1):4878. doi: 10.1038/s41467-018-07318-3.
5
Combined angiography and perfusion using radial imaging and arterial spin labeling.
Magn Reson Med. 2019 Jan;81(1):182-194. doi: 10.1002/mrm.27366. Epub 2018 Jul 19.
6
Using High-Field Magnetic Resonance Imaging to Estimate Distensibility of the Middle Cerebral Artery.
Neurodegener Dis. 2016;16(5-6):407-10. doi: 10.1159/000446397. Epub 2016 Jul 23.
7
Effects of arterial transit delay on cerebral blood flow quantification using arterial spin labeling in an elderly cohort.
J Magn Reson Imaging. 2017 Feb;45(2):472-481. doi: 10.1002/jmri.25367. Epub 2016 Jul 7.
8
Assessing intracranial vascular compliance using dynamic arterial spin labeling.
Neuroimage. 2016 Jan 1;124(Pt A):433-441. doi: 10.1016/j.neuroimage.2015.09.008. Epub 2015 Sep 10.
10
XD-GRASP: Golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing.
Magn Reson Med. 2016 Feb;75(2):775-88. doi: 10.1002/mrm.25665. Epub 2015 Mar 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验