Suppr超能文献

用于三维采集脑血流成像的改进型速度选择性反转动脉自旋标记技术。

Improved velocity-selective-inversion arterial spin labeling for cerebral blood flow mapping with 3D acquisition.

作者信息

Liu Dapeng, Xu Feng, Li Wenbo, van Zijl Peter C, Lin Doris D, Qin Qin

机构信息

The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.

出版信息

Magn Reson Med. 2020 Nov;84(5):2512-2522. doi: 10.1002/mrm.28310. Epub 2020 May 13.

Abstract

PURPOSE

To further optimize the velocity-selective arterial spin labeling (VSASL) sequence utilizing a Fourier-transform based velocity-selective inversion (FT-VSI) pulse train, and to evaluate its utility for 3D mapping of cerebral blood flow (CBF) with a gradient- and spin-echo (GRASE) readout.

METHODS

First, numerical simulations and phantom experiments were done to test the susceptibility to eddy currents and B field inhomogeneities for FT-VSI pulse trains with block and composite refocusing pulses. Second, the choices of the post-labeling delay (PLD) for FT-VSI prepared 3D VSASL were evaluated for the sensitivity to perfusion signal. The study was conducted among a young-age and a middle-age group at 3T. Both signal-to-noise ratio (SNR) and CBF were quantitatively compared with pseudo-continuous ASL (PCASL). The optimized 3D VSI-ASL was also qualitatively compared with PCASL in a whole-brain coverage among two healthy volunteers and a brain tumor patient.

RESULTS

The simulations and phantom test showed that composite refocusing pulses are more robust to both eddy-currents and B field inhomogeneities than block pulses. 3D VSASL images with FT-VSI preparation were acquired over a range of PLDs and PLD = 1.2 s was selected for its higher perfusion signal. FT-VSI labeling produced quantitative CBF maps with 27% higher SNR in gray matter compared to PCASL. 3D whole-brain CBF mapping using VSI-ASL were comparable to the corresponding PCASL results.

CONCLUSION

FT-VSI with 3D-GRASE readout was successfully implemented and showed higher sensitivity to perfusion signal than PCASL for both young and middle-aged healthy volunteers.

摘要

目的

利用基于傅里叶变换的速度选择性反转(FT-VSI)脉冲序列进一步优化速度选择性动脉自旋标记(VSASL)序列,并评估其在采用梯度和自旋回波(GRASE)读出方式进行脑血流量(CBF)三维映射中的效用。

方法

首先,进行数值模拟和体模实验,以测试具有块脉冲和复合重聚焦脉冲的FT-VSI脉冲序列对涡流和B场不均匀性的敏感性。其次,评估FT-VSI制备的三维VSASL中标记后延迟(PLD)的选择对灌注信号的敏感性。该研究在3T场强下的青年组和中年组中进行。将信噪比(SNR)和CBF与伪连续动脉自旋标记(PCASL)进行定量比较。还在两名健康志愿者和一名脑肿瘤患者的全脑覆盖范围内,将优化后的三维VSI-ASL与PCASL进行定性比较。

结果

模拟和体模测试表明,复合重聚焦脉冲对涡流和B场不均匀性的耐受性比块脉冲更强。在一系列PLD范围内采集了具有FT-VSI制备的三维VSASL图像,并选择PLD = 1.2 s,因为其灌注信号更高。与PCASL相比,FT-VSI标记产生的灰质定量CBF图的SNR高27%。使用VSI-ASL进行的三维全脑CBF映射与相应的PCASL结果相当。

结论

成功实现了具有三维GRASE读出的FT-VSI,并且对于青年和中年健康志愿者,其对灌注信号的敏感性均高于PCASL。

相似文献

1
Improved velocity-selective-inversion arterial spin labeling for cerebral blood flow mapping with 3D acquisition.
Magn Reson Med. 2020 Nov;84(5):2512-2522. doi: 10.1002/mrm.28310. Epub 2020 May 13.
2
Velocity-selective-inversion prepared arterial spin labeling.
Magn Reson Med. 2016 Oct;76(4):1136-48. doi: 10.1002/mrm.26010. Epub 2015 Oct 28.
3
Reduced B/B sensitivity in velocity-selective inversion arterial spin labeling using adiabatic refocusing pulses.
Magn Reson Med. 2024 Nov;92(5):2091-2100. doi: 10.1002/mrm.30210. Epub 2024 Jul 16.
6
Robust dual-module velocity-selective arterial spin labeling (dm-VSASL) with velocity-selective saturation and inversion.
Magn Reson Med. 2023 Mar;89(3):1026-1040. doi: 10.1002/mrm.29513. Epub 2022 Nov 6.
7
Accelerated 3D-GRASE imaging improves quantitative multiple post labeling delay arterial spin labeling.
Magn Reson Med. 2018 Dec;80(6):2475-2484. doi: 10.1002/mrm.27226. Epub 2018 May 16.
8
Improved sensitivity and temporal resolution in perfusion FMRI using velocity selective inversion ASL.
Magn Reson Med. 2019 Feb;81(2):1004-1015. doi: 10.1002/mrm.27461. Epub 2018 Sep 6.

引用本文的文献

5
Non-contrast free-breathing liver perfusion imaging using velocity selective ASL combined with prospective motion compensation.
Z Med Phys. 2025 Feb;35(1):87-97. doi: 10.1016/j.zemedi.2024.06.001. Epub 2024 Jul 2.
7
Velocity-selective arterial spin labeling perfusion measurements in 2nd trimester human placenta with varying BMI.
Placenta. 2024 May;150:72-79. doi: 10.1016/j.placenta.2024.03.012. Epub 2024 Apr 3.

本文引用的文献

1
Cerebral blood volume mapping using Fourier-transform-based velocity-selective saturation pulse trains.
Magn Reson Med. 2019 Jun;81(6):3544-3554. doi: 10.1002/mrm.27668. Epub 2019 Feb 8.
2
Improved sensitivity and temporal resolution in perfusion FMRI using velocity selective inversion ASL.
Magn Reson Med. 2019 Feb;81(2):1004-1015. doi: 10.1002/mrm.27461. Epub 2018 Sep 6.
3
Characterization and suppression of stripe artifact in velocity-selective magnetization-prepared unenhanced MR angiography.
Magn Reson Med. 2018 Nov;80(5):1997-2005. doi: 10.1002/mrm.27160. Epub 2018 Mar 13.
5
Global fluctuations of cerebral blood flow indicate a global brain network independent of systemic factors.
J Cereb Blood Flow Metab. 2019 Feb;39(2):302-312. doi: 10.1177/0271678X17726625. Epub 2017 Aug 17.
6
Whole-brain arteriography and venography: Using improved velocity-selective saturation pulse trains.
Magn Reson Med. 2018 Apr;79(4):2014-2023. doi: 10.1002/mrm.26864. Epub 2017 Aug 10.
8
Improving the robustness of pseudo-continuous arterial spin labeling to off-resonance and pulsatile flow velocity.
Magn Reson Med. 2017 Oct;78(4):1342-1351. doi: 10.1002/mrm.26513. Epub 2016 Oct 23.
9
Measuring the labeling efficiency of pseudocontinuous arterial spin labeling.
Magn Reson Med. 2017 May;77(5):1841-1852. doi: 10.1002/mrm.26266. Epub 2016 May 13.
10
Velocity-selective-inversion prepared arterial spin labeling.
Magn Reson Med. 2016 Oct;76(4):1136-48. doi: 10.1002/mrm.26010. Epub 2015 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验