Wang Xiaowen, Pan Jiaying, Wei Haiqiao, Li Wenjia, Zhao Jun, Hu Zhen
State Key Laboratory of Engines, Tianjin University, China.
Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Tianjin University, China.
Phys Chem Chem Phys. 2021 May 19;23(19):11557-11567. doi: 10.1039/d1cp01015h.
Converting CO2 into valuable chemicals via catalytic reactions can mitigate both the greenhouse effect and energy shortage problems, thus designing efficient catalysts have attracted considerable attention over the past decades. In this work, a density functional theory (DFT) calculation was carried out to investigate the CO2 activation and dissociation processes on various PdnPt(4-n)/In2O3 (n = 0-4) catalysts. The PdnPt(4-n)/In2O3 models were initially built, and the interface sites of PdnPt(4-n)/In2O3 for CO2 adsorption were confirmed among cluster sites and substrate sites. The CO2 adsorption geometries, charger transfer, and projected density of states (PDOS) were analyzed to study the CO2-PdnPt(4-n)/In2O3 interactions. From the adsorbed *CO2, the transition states (TSs) for CO2 dissociation to form *CO and *O were gained to reveal the characteristics of the activated CO2δ-. Overall, according to the adsorption energy Eads results, the bimetallic PdPt3/In2O3 and Pd3Pt/In2O3 catalysts showed the strongest and weakest CO2 adsorption stabilities, respectively, while the Pd element addition decreases the barriers for CO2 dissociation with the priority order of Pd4 > Pd3Pt > Pd2Pt2 > PdPt3 > Pt4. The Brønsted-Evans-Polanyi (BEP) relation between activation barriers (Eb) and reaction energies E was obtained for the CO2 dissociation mechanism on PdnPt(4-n)/In2O3 catalysts with the equation of E = 0.20Eb + 0.40. Finally, the optimal Pd2Pt2/In2O3 catalyst for CO2 activation and dissociation was proposed. This study provides useful information for CO2 activation and conversation procedures on bimetal-oxide catalysts, and helps to take the optimal design of PdPt/In2O3 catalysts for the CO2 reaction.
通过催化反应将二氧化碳转化为有价值的化学品可以缓解温室效应和能源短缺问题,因此在过去几十年中,设计高效催化剂引起了相当大的关注。在这项工作中,进行了密度泛函理论(DFT)计算,以研究各种PdnPt(4-n)/In2O3(n = 0-4)催化剂上的二氧化碳活化和解离过程。首先构建了PdnPt(4-n)/In2O3模型,并在团簇位点和基底位点之间确定了PdnPt(4-n)/In2O3用于二氧化碳吸附的界面位点。分析了二氧化碳吸附几何结构、电荷转移和投影态密度(PDOS),以研究二氧化碳与PdnPt(4-n)/In2O3的相互作用。从吸附的CO2中获得了二氧化碳解离形成CO和*O的过渡态(TSs),以揭示活化的CO2δ-的特征。总体而言,根据吸附能Eads结果,双金属PdPt3/In2O3和Pd3Pt/In2O3催化剂分别表现出最强和最弱的二氧化碳吸附稳定性,而添加Pd元素降低了二氧化碳解离的势垒,优先顺序为Pd4 > Pd3Pt > Pd2Pt2 > PdPt3 > Pt4。对于PdnPt(4-n)/In2O3催化剂上的二氧化碳解离机理,得到了活化能垒(Eb)与反应能量E之间的布朗斯特-埃文斯-波拉尼(BEP)关系,方程为E = 0.20Eb + 0.40。最后,提出了用于二氧化碳活化和解离的最佳Pd2Pt2/In2O3催化剂。本研究为双金属氧化物催化剂上的二氧化碳活化和转化过程提供了有用信息,并有助于对用于二氧化碳反应的PdPt/In2O3催化剂进行优化设计。