Department of Electrical Engineering, Hanyang University.
Department of Ophthalmology, Hanyang University College of Medicine.
J Glaucoma. 2021 Sep 1;30(9):803-812. doi: 10.1097/IJG.0000000000001885.
(1) To evaluate the performance of deep learning (DL) classifier in detecting glaucoma, based on wide-field swept-source optical coherence tomography (SS-OCT) images. (2) To assess the performance of DL-based fusion methods in diagnosing glaucoma using a variety of wide-field SS-OCT images and compare their diagnostic abilities with that of conventional parameter-based methods.
Overall, 675 eyes, including 258 healthy eyes and 417 eyes with glaucoma were enrolled in this retrospective observational study. Each single-page wide-field report (12×9 mm) of wide-field SS-OCT imaging provides different types of images that reflect the state of the eyes. A DL-based automated diagnosis system was proposed to detect glaucoma and identify its stage based on such images. We applied the convolutional neural network to each type of image to detect glaucoma. In addition, 2 fusion strategies, fusion by convolution network (FCN) and fusion by fully connected network (FFC) were developed; they differ in terms of the level of fusion of features derived from convolutional neural networks. The diagnostic models were trained using 382 and 293 images in the training and test data sets, respectively. The diagnostic ability of this method was compared with conventional parameters of the thickness of the retinal nerve fiber layer and ganglion cell complex.
FCN achieved an area under the receiver operating characteristic curve (AUC) of 0.987 (95% confidence interval, CI: 0.968-0.996) and an accuracy of 95.22%. In contrast, FFC achieved an AUC of 0.987 (95% CI, 0.971-0.998) and an accuracy of 95.90%. Both FCN and FFC outperformed the conventional method (P<0.001). In detecting early glaucoma, both FCN and FFC achieved significantly higher AUC and accuracy than the conventional approach (P<0.001). In addition, the classification performance of the DL-based fusion methods in identifying the 5 stages of glaucoma is presented via a confusion matrix.
DL protocol based on wide-field OCT images outperformed the conventional method in terms of both AUC and accuracy. Therefore, DL-based diagnostic methods using wide-field OCT images are promising in diagnosing glaucoma in clinical practice.
(1)评估基于宽场扫频源光学相干断层扫描(SS-OCT)图像的深度学习(DL)分类器在检测青光眼方面的性能。(2)评估基于 DL 的融合方法在使用各种宽场 SS-OCT 图像诊断青光眼方面的性能,并比较其与传统基于参数方法的诊断能力。
本回顾性观察研究共纳入 675 只眼,包括 258 只健康眼和 417 只青光眼眼。宽场 SS-OCT 成像的每个单页宽场报告(12×9mm)提供反映眼部状态的不同类型的图像。基于这些图像,我们提出了一种基于 DL 的自动诊断系统来检测青光眼并识别其阶段。我们应用卷积神经网络对每种类型的图像进行青光眼检测。此外,我们开发了两种融合策略,卷积网络融合(FCN)和全连接网络融合(FFC);它们在融合卷积神经网络提取的特征方面存在差异。使用训练数据集和测试数据集的 382 张和 293 张图像分别训练诊断模型。该方法的诊断能力与视网膜神经纤维层和节细胞复合体厚度的传统参数进行了比较。
FCN 的受试者工作特征曲线下面积(AUC)为 0.987(95%置信区间,CI:0.968-0.996),准确率为 95.22%。相比之下,FFC 的 AUC 为 0.987(95%CI,0.971-0.998),准确率为 95.90%。FCN 和 FFC 均优于传统方法(P<0.001)。在检测早期青光眼时,FCN 和 FFC 的 AUC 和准确率均显著高于传统方法(P<0.001)。此外,通过混淆矩阵展示了基于 DL 的融合方法在识别青光眼 5 个阶段的分类性能。
基于宽场 OCT 图像的 DL 方案在 AUC 和准确率方面均优于传统方法。因此,基于宽场 OCT 图像的 DL 诊断方法在临床实践中有望用于诊断青光眼。