Suppr超能文献

束敏感材料的4D-STEM

4D-STEM of Beam-Sensitive Materials.

作者信息

Bustillo Karen C, Zeltmann Steven E, Chen Min, Donohue Jennifer, Ciston Jim, Ophus Colin, Minor Andrew M

机构信息

National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States.

出版信息

Acc Chem Res. 2021 Jun 1;54(11):2543-2551. doi: 10.1021/acs.accounts.1c00073. Epub 2021 May 12.

Abstract

ConspectusScanning electron nanobeam diffraction, or 4D-STEM (four-dimensional scanning transmission electron microscopy), is a flexible and powerful approach to elucidate structure from "soft" materials that are challenging to image in the transmission electron microscope because their structure is easily damaged by the electron beam. In a 4D-STEM experiment, a converged electron beam is scanned across the sample, and a pixelated camera records a diffraction pattern at each scan position. This four-dimensional data set can be mined for various analyses, producing maps of local crystal orientation, structural distortions, crystallinity, or different structural classes. Holding the sample at cryogenic temperatures minimizes diffusion of radicals and the resulting damage and disorder caused by the electron beam. The total fluence of incident electrons can easily be controlled during 4D-STEM experiments by careful use of the beam blanker, steering of the localized electron dose, and by minimizing the fluence in the convergent beam thus minimizing beam damage. This technique can be applied to both organic and inorganic materials that are known to be beam-sensitive; they can be highly crystalline, semicrystalline, mixed phase, or amorphous.One common example is the case for many organic materials that have a π-π stacking of polymer chains or rings on the order of 3.4-4.2 Å separation. If these chains or rings are aligned in some regions, they will produce distinct diffraction spots (as would other crystalline spacings in this range), though they may be weak or diffuse for disordered or weakly scattering materials. We can reconstruct the orientation of the π-π stacking, the degree of π-π stacking in the sample, and the domain size of the aligned regions. This Account summarizes illumination conditions and experimental parameters for 4D-STEM experiments with the goal of producing images of structural features for materials that are beam-sensitive. We will discuss experimental parameters including sample cooling, probe size and shape, fluence, and cameras. 4D-STEM has been applied to a variety of materials, not only as an advanced technique for model systems, but as a technique for the beginning microscopist to answer materials science questions. It is noteworthy that the experimental data acquisition does not require an aberration-corrected TEM but can be produced on a variety of instruments with the right attention to experimental parameters.

摘要

综述

扫描电子纳米束衍射,即4D-STEM(四维扫描透射电子显微镜),是一种灵活且强大的方法,用于从“软”材料中解析结构,这些材料在透射电子显微镜中成像具有挑战性,因为它们的结构容易被电子束破坏。在4D-STEM实验中,会聚电子束扫描样品,像素化相机在每个扫描位置记录衍射图案。这个四维数据集可用于各种分析,生成局部晶体取向、结构畸变、结晶度或不同结构类别的图谱。将样品保持在低温温度可最大程度减少自由基的扩散以及电子束导致的损伤和无序。在4D-STEM实验期间,通过谨慎使用束闸、控制局部电子剂量的方向以及最小化会聚束中的注量从而最小化束损伤,可以轻松控制入射电子的总注量。该技术可应用于已知对束敏感的有机和无机材料;它们可以是高度结晶、半结晶、混合相或无定形的。一个常见的例子是许多有机材料的情况,这些材料具有聚合物链或环的π-π堆积,间距约为3.4 - 4.2 Å。如果这些链或环在某些区域排列整齐,它们将产生明显的衍射斑点(与该范围内的其他晶体间距一样),尽管对于无序或弱散射材料,它们可能较弱或弥散。我们可以重建π-π堆积的取向、样品中π-π堆积的程度以及排列区域的畴尺寸。本综述总结了4D-STEM实验的照明条件和实验参数,目的是为对束敏感的材料生成结构特征图像。我们将讨论实验参数,包括样品冷却、探针尺寸和形状、注量以及相机。4D-STEM已应用于多种材料,不仅作为模型系统的先进技术,也作为初学者显微镜学家回答材料科学问题的技术。值得注意的是,实验数据采集不需要像差校正的透射电子显微镜,但可以在各种仪器上通过正确关注实验参数来生成。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验