Suppr超能文献

跨被试零校准驾驶员困倦检测:探索 EEG 信号的时空图像编码用于卷积神经网络分类。

Cross-Subject Zero Calibration Driver's Drowsiness Detection: Exploring Spatiotemporal Image Encoding of EEG Signals for Convolutional Neural Network Classification.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2021;29:905-915. doi: 10.1109/TNSRE.2021.3079505. Epub 2021 May 18.

Abstract

This paper explores two methodologies for drowsiness detection using EEG signals in a sustained-attention driving task considering pre-event time windows, and focusing on cross-subject zero calibration. Driving accidents are a major cause of injuries and deaths on the road. A considerable portion of those are due to fatigue and drowsiness. Advanced driver assistance systems that could detect mental states which are associated with hazardous situations, such as drowsiness, are of critical importance. EEG signals are used widely for brain-computer interfaces, as well as mental state recognition. However, these systems are still difficult to design due to very low signal-to-noise ratios and cross-subject disparities, requiring individual calibration cycles. To tackle this research domain, here, we explore drowsiness detection based on EEG signals' spatiotemporal image encoding representations in the form of either recurrence plots or gramian angular fields for deep convolutional neural network (CNN) classification. Results comparing both techniques using a public dataset of 27 subjects show a superior balanced accuracy of up to 75.87% for leave-one-out cross-validation, using both techniques, against works in the literature, demonstrating the possibility to pursue cross-subject zero calibration design.

摘要

本文探讨了在持续注意力驾驶任务中使用 EEG 信号进行瞌睡检测的两种方法,考虑了预事件时间窗口,并专注于跨主体零校准。驾驶事故是道路上受伤和死亡的主要原因。其中相当一部分是由于疲劳和困倦。能够检测与危险情况(如困倦)相关的精神状态的先进驾驶员辅助系统至关重要。EEG 信号广泛用于脑机接口和精神状态识别。然而,由于信噪比和跨主体差异非常低,需要进行单独的校准周期,这些系统仍然难以设计。为了解决这个研究领域的问题,我们在这里探索了基于 EEG 信号时空图像编码表示的瞌睡检测,其形式为递归图或 Gramian 角场,用于深度卷积神经网络(CNN)分类。使用 27 名受试者的公共数据集比较这两种技术的结果表明,使用这两种技术的留一交叉验证的平衡准确率高达 75.87%,优于文献中的工作,证明了追求跨主体零校准设计的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验