Suppr超能文献

一种用于从单通道脑电图进行跨受试者驾驶员困倦检测的紧凑且可解释的卷积神经网络。

A compact and interpretable convolutional neural network for cross-subject driver drowsiness detection from single-channel EEG.

作者信息

Cui Jian, Lan Zirui, Liu Yisi, Li Ruilin, Li Fan, Sourina Olga, Müller-Wittig Wolfgang

机构信息

Fraunhofer Singapore, Nanyang Technological University, Singapore.

Fraunhofer Singapore, Singapore.

出版信息

Methods. 2022 Jun;202:173-184. doi: 10.1016/j.ymeth.2021.04.017. Epub 2021 Apr 24.

Abstract

Driver drowsiness is one of the main factors leading to road fatalities and hazards in the transportation industry. Electroencephalography (EEG) has been considered as one of the best physiological signals to detect drivers' drowsy states, since it directly measures neurophysiological activities in the brain. However, designing a calibration-free system for driver drowsiness detection with EEG is still a challenging task, as EEG suffers from serious mental and physical drifts across different subjects. In this paper, we propose a compact and interpretable Convolutional Neural Network (CNN) to discover shared EEG features across different subjects for driver drowsiness detection. We incorporate the Global Average Pooling (GAP) layer in the model structure, allowing the Class Activation Map (CAM) method to be used for localizing regions of the input signal that contribute most for classification. Results show that the proposed model can achieve an average accuracy of 73.22% on 11 subjects for 2-class cross-subject EEG signal classification, which is higher than conventional machine learning methods and other state-of-art deep learning methods. It is revealed by the visualization technique that the model has learned biologically explainable features, e.g., Alpha spindles and Theta burst, as evidence for the drowsy state. It is also interesting to see that the model uses artifacts that usually dominate the wakeful EEG, e.g., muscle artifacts and sensor drifts, to recognize the alert state. The proposed model illustrates a potential direction to use CNN models as a powerful tool to discover shared features related to different mental states across different subjects from EEG signals.

摘要

驾驶员疲劳是导致道路交通事故死亡和运输行业危险的主要因素之一。脑电图(EEG)被认为是检测驾驶员疲劳状态的最佳生理信号之一,因为它直接测量大脑中的神经生理活动。然而,设计一个无需校准的基于脑电图的驾驶员疲劳检测系统仍然是一项具有挑战性的任务,因为脑电图在不同受试者之间存在严重的心理和生理漂移。在本文中,我们提出了一种紧凑且可解释的卷积神经网络(CNN),用于发现不同受试者之间共享的脑电图特征以进行驾驶员疲劳检测。我们在模型结构中纳入了全局平均池化(GAP)层,使得类激活映射(CAM)方法能够用于定位对分类贡献最大的输入信号区域。结果表明,所提出的模型在11名受试者上进行二分类跨受试者脑电图信号分类时,平均准确率可达73.22%,高于传统机器学习方法和其他先进的深度学习方法。可视化技术表明,该模型学习到了具有生物学可解释性的特征,例如阿尔法波纺锤和θ波爆发,作为疲劳状态的证据。同样有趣的是,该模型利用通常在清醒脑电图中占主导地位的伪迹(例如肌肉伪迹和传感器漂移)来识别警觉状态。所提出的模型展示了一个潜在的方向,即使用CNN模型作为一种强大工具,从脑电图信号中发现与不同受试者不同心理状态相关的共享特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验