Wu Dingming, Deng Liu, Lu Quanping, Liu Shihong
MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China.
School of Computer Science, Chengdu University of Information Technology, Chengdu, 610225 China.
Cogn Neurodyn. 2025 Dec;19(1):43. doi: 10.1007/s11571-025-10224-2. Epub 2025 Feb 20.
Variations in information processing patterns induced by operational directives under varying fatigue conditions within the cerebral cortex can be identified and analyzed through electroencephalogram (EEG) signals. The inherent complexity of EEG signals poses significant challenges in the effective detection of driver fatigue across diverse task scenarios. Recent advancements in deep learning, particularly the Transformer architecture, have shown substantial benefits in the retrieval and integration of multi-dimensional information. Nevertheless, the majority of current research primarily focuses on the application of Transformers for temporal information extraction, often overlooking other dimensions of EEG data. In response to this gap, the present study introduces a Multidimensional Adaptive Transformer Recognition Network specifically tailored for the identification of driving fatigue states. This network features a multidimensional Transformer architecture for feature extraction that adaptively assigns weights to various information dimensions, thereby facilitating feature compression and the effective extraction of structural information. This methodology ultimately enhances the model's accuracy and generalization capabilities. The experimental results indicate that the proposed methodology outperforms existing research methods when utilized with the SEED-VIG and SFDE datasets. Additionally, the analysis of multidimensional and frequency band features highlights the ability of the proposed network framework to elucidate differences in various multidimensional features during the identification of fatigue states.
通过脑电图(EEG)信号,可以识别和分析在不同疲劳条件下大脑皮层内操作指令所引发的信息处理模式变化。EEG信号固有的复杂性给在各种任务场景中有效检测驾驶员疲劳带来了重大挑战。深度学习的最新进展,特别是Transformer架构,在多维信息的检索和整合方面显示出显著优势。然而,当前大多数研究主要集中在将Transformer应用于时间信息提取,常常忽略了EEG数据的其他维度。针对这一差距,本研究引入了一种专门为识别驾驶疲劳状态量身定制的多维自适应Transformer识别网络。该网络具有用于特征提取的多维Transformer架构,能自适应地为各种信息维度分配权重,从而促进特征压缩和结构信息的有效提取。这种方法最终提高了模型的准确性和泛化能力。实验结果表明,当与SEED-VIG和SFDE数据集一起使用时,所提出的方法优于现有研究方法。此外对多维和频带特征的分析突出了所提出的网络框架在识别疲劳状态期间阐明各种多维特征差异的能力。