Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
Applied Research Laboratory, The Pennsylvania State University, University Park, PA 16802, USA.
Cell Rep. 2021 May 11;35(6):109114. doi: 10.1016/j.celrep.2021.109114.
How genes interact with the environment to shape phenotypic variation and evolution is a fundamental question intriguing to biologists from various fields. Existing linear models built on single genes are inadequate to reveal the complexity of genotype-environment (G-E) interactions. Here, we develop a conceptual model for mechanistically dissecting G-E interplay by integrating previously disconnected theories and methods. Under this integration, evolutionary game theory, developmental modularity theory, and a variable selection method allow us to reconstruct environment-induced, maximally informative, sparse, and casual multilayer genetic networks. We design and conduct two mapping experiments by using a desert-adapted tree species to validate the biological application of the model proposed. The model identifies previously uncharacterized molecular mechanisms that mediate trees' response to saline stress. Our model provides a tool to comprehend the genetic architecture of trait variation and evolution and trace the information flow of each gene toward phenotypes within omnigenic networks.
基因如何与环境相互作用来塑造表型变异和进化,是吸引来自不同领域的生物学家的一个基本问题。现有的基于单个基因的线性模型不足以揭示基因型-环境(G-E)相互作用的复杂性。在这里,我们通过整合以前不相关的理论和方法,为从机制上剖析 G-E 相互作用开发了一个概念模型。在这种整合下,进化博弈论、发育模块性理论和变量选择方法使我们能够重建环境诱导的、信息量最大的、稀疏的和因果的多层遗传网络。我们设计并进行了两项映射实验,使用一种适应沙漠的树种来验证所提出模型的生物学应用。该模型确定了以前未被描述的分子机制,这些机制介导了树木对盐胁迫的反应。我们的模型提供了一种工具,可以理解性状变异和进化的遗传结构,并追踪每个基因在全基因组网络中向表型传递信息的过程。