Suppr超能文献

有效调节细胞磷组分以响应甲藻中的磷缺乏。

Efficient modulation of cellular phosphorus components in response to phosphorus deficiency in the dinoflagellate .

机构信息

College of Life Science and Technology and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University , Guangzhou, China.

Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) , Zhuhai, China.

出版信息

Appl Environ Microbiol. 2023 Nov 29;89(11):e0086723. doi: 10.1128/aem.00867-23. Epub 2023 Oct 18.

Abstract

Dinoflagellates are the most common phytoplankton group and account for more than 75% of harmful algal blooms in coastal waters. In recent decades, dinoflagellates seem to prevail in phosphate-depleted waters. However, the underlying acclimation mechanisms and competitive strategies of dinoflagellates in response to phosphorus deficiency are poorly understood, especially in terms of intracellular phosphorus modulation and recycling. Here, we focused on the response of intracellular phosphorus metabolism to phosphorus deficiency in the model dinoflagellate . Our work reveals the strong capability of to efficiently regulate intracellular phosphorus resources, particularly through membrane phospholipid remodeling and miRNA regulation of energy metabolism. Our research improved the understanding of intracellular phosphorus metabolism in marine phytoplankton and underscored the advantageous strategies of dinoflagellates in the efficient modulation of internal phosphorus resources to maintain active physiological activity and growth under unsuitable phosphorus conditions, which help them outcompete other species in coastal phosphate-depleted environments.

摘要

甲藻是最常见的浮游植物群,约占沿海水域有害藻类大量繁殖的 75%以上。近几十年来,甲藻似乎在磷匮乏的水域中占优势。然而,人们对甲藻在磷缺乏条件下的适应机制和竞争策略知之甚少,尤其是在细胞内磷的调节和回收方面。在这里,我们专注于模型甲藻 中细胞内磷代谢对磷缺乏的响应。我们的工作揭示了 有效调节细胞内磷资源的强大能力,特别是通过膜磷脂的重塑和 miRNA 对能量代谢的调节。我们的研究提高了对海洋浮游植物细胞内磷代谢的认识,并强调了甲藻在有效调节内部磷资源方面的优势策略,以在不适宜的磷条件下维持活跃的生理活性和生长,从而帮助它们在沿海磷匮乏环境中胜过其他物种。

相似文献

1
Efficient modulation of cellular phosphorus components in response to phosphorus deficiency in the dinoflagellate .
Appl Environ Microbiol. 2023 Nov 29;89(11):e0086723. doi: 10.1128/aem.00867-23. Epub 2023 Oct 18.
3
Significance of phosphate adsorbed on the cellular surface as a storage pool and its regulation in marine microalgae.
Mar Environ Res. 2024 Mar;195:106378. doi: 10.1016/j.marenvres.2024.106378. Epub 2024 Jan 20.
4
Membrane lipid remodeling and autophagy to cope with phosphorus deficiency in the dinoflagellate Prorocentrum shikokuense.
Chemosphere. 2024 Feb;349:140844. doi: 10.1016/j.chemosphere.2023.140844. Epub 2023 Nov 30.
7
A Novel Algicidal Bacterium and Its Effects against the Toxic Dinoflagellate (Dinophyceae).
Microbiol Spectr. 2022 Jun 29;10(3):e0042922. doi: 10.1128/spectrum.00429-22. Epub 2022 May 26.
8
Transcriptome responses of the dinoflagellate Karenia mikimotoi driven by nitrogen deficiency.
Harmful Algae. 2021 Mar;103:101977. doi: 10.1016/j.hal.2021.101977. Epub 2021 Jan 27.
10
Triazine herbicide reduced the toxicity of the harmful dinoflagellate Karenia mikimotoi by impairing its photosynthetic systems.
Ecotoxicol Environ Saf. 2024 Jan 1;269:115740. doi: 10.1016/j.ecoenv.2023.115740. Epub 2023 Dec 1.

引用本文的文献

本文引用的文献

1
: The biology and ecology of a toxic genus.
Harmful Algae. 2012 Feb;14:156-178. doi: 10.1016/j.hal.2011.10.020. Epub 2011 Oct 25.
2
Harmful algal blooms and associated fisheries damage in East Asia: Current status and trends in China, Japan, Korea and Russia.
Harmful Algae. 2021 Feb;102:101787. doi: 10.1016/j.hal.2020.101787. Epub 2020 Mar 23.
3
A review of karenia mikimotoi: Bloom events, physiology, toxicity and toxic mechanism.
Harmful Algae. 2019 Dec;90:101702. doi: 10.1016/j.hal.2019.101702. Epub 2019 Nov 20.
5
Comparative metatranscriptomic profiling and microRNA sequencing to reveal active metabolic pathways associated with a dinoflagellate bloom.
Sci Total Environ. 2020 Jan 10;699:134323. doi: 10.1016/j.scitotenv.2019.134323. Epub 2019 Sep 6.
6
Adaptation of Synechococcus sp. PCC 7942 to phosphate starvation by glycolipid accumulation and membrane lipid remodeling.
Biochim Biophys Acta Mol Cell Biol Lipids. 2019 Dec;1864(12):158522. doi: 10.1016/j.bbalip.2019.158522. Epub 2019 Sep 2.
9
ATP Synthase: Structure, Function and Inhibition.
Biomol Concepts. 2019 Mar 7;10(1):1-10. doi: 10.1515/bmc-2019-0001.
10
Initial evidence of functional siRNA machinery in dinoflagellates.
Harmful Algae. 2019 Jan;81:53-58. doi: 10.1016/j.hal.2018.11.014. Epub 2018 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验