Department of Haematology-Oncology, National University Cancer Institute Singapore, National University Hospital, Singapore.
Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
Gut. 2022 Apr;71(4):676-685. doi: 10.1136/gutjnl-2021-324060. Epub 2021 May 12.
To date, there are no predictive biomarkers to guide selection of patients with gastric cancer (GC) who benefit from paclitaxel. Stomach cancer Adjuvant Multi-Institutional group Trial (SAMIT) was a 2×2 factorial randomised phase III study in which patients with GC were randomised to Pac-S-1 (paclitaxel +S-1), Pac-UFT (paclitaxel +UFT), S-1 alone or UFT alone after curative surgery.
The primary objective of this study was to identify a gene signature that predicts survival benefit from paclitaxel chemotherapy in GC patients. SAMIT GC samples were profiled using a customised 476 gene NanoString panel. A random forest machine-learning model was applied on the NanoString profiles to develop a gene signature. An independent cohort of metastatic patients with GC treated with paclitaxel and ramucirumab (Pac-Ram) served as an external validation cohort.
From the SAMIT trial 499 samples were analysed in this study. From the Pac-S-1 training cohort, the random forest model generated a 19-gene signature assigning patients to two groups: Pac-Sensitive and Pac-Resistant. In the Pac-UFT validation cohort, Pac-Sensitive patients exhibited a significant improvement in disease free survival (DFS): 3-year DFS 66% vs 40% (HR 0.44, p=0.0029). There was no survival difference between Pac-Sensitive and Pac-Resistant in the UFT or S-1 alone arms, test of interaction p<0.001. In the external Pac-Ram validation cohort, the signature predicted benefit for Pac-Sensitive (median PFS 147 days vs 112 days, HR 0.48, p=0.022).
Using machine-learning techniques on one of the largest GC trials (SAMIT), we identify a gene signature representing the first predictive biomarker for paclitaxel benefit.
UMIN Clinical Trials Registry: C000000082 (SAMIT); ClinicalTrials.gov identifier, 02628951 (South Korean trial).
迄今为止,尚无预测生物标志物可指导选择从紫杉醇治疗中获益的胃癌(GC)患者。胃癌辅助多机构试验(SAMIT)是一项 2×2 析因随机 III 期研究,其中 GC 患者在根治性手术后随机接受 Pac-S-1(紫杉醇+S-1)、Pac-UFT(紫杉醇+UFT)、S-1 或 UFT 治疗。
本研究的主要目的是确定一种基因特征,可预测 GC 患者接受紫杉醇化疗的生存获益。SAMIT GC 样本使用定制的 476 基因 NanoString 面板进行分析。随机森林机器学习模型应用于 NanoString 图谱以开发基因特征。一个独立的转移性 GC 患者队列接受紫杉醇和雷莫芦单抗(Pac-Ram)治疗,作为外部验证队列。
本研究分析了来自 SAMIT 试验的 499 个样本。在 Pac-S-1 训练队列中,随机森林模型生成了一个由 19 个基因组成的特征,将患者分为两组:Pac-Sensitive 和 Pac-Resistant。在 Pac-UFT 验证队列中,Pac-Sensitive 患者的无病生存期(DFS)显著改善:3 年 DFS 为 66%比 40%(HR 0.44,p=0.0029)。在 UFT 或 S-1 单药治疗组中,Pac-Sensitive 和 Pac-Resistant 之间没有生存差异,交互检验 p<0.001。在外部 Pac-Ram 验证队列中,该特征预测 Pac-Sensitive 患者获益(中位 PFS 147 天比 112 天,HR 0.48,p=0.022)。
使用机器学习技术对最大的 GC 试验之一(SAMIT)进行分析,我们确定了一种代表紫杉醇获益的首个预测生物标志物的基因特征。
UMIN 临床试验注册中心:C000000082(SAMIT);ClinicalTrials.gov 标识符,02628951(韩国试验)。