Department of Computer Science, TH Aschaffenburg, Aschaffenburg, 63741, Germany.
Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf and Institute for Biomedical Imaging, Hamburg University of Technology, Germany.
Med Phys. 2021 Jul;48(7):3893-3903. doi: 10.1002/mp.14938. Epub 2021 Jun 16.
Magnetic particle imaging (MPI) is a preclinical imaging technique capable of visualizing the spatio-temporal distribution of magnetic nanoparticles. The image reconstruction of this fast and dynamic process relies on efficiently solving an ill-posed inverse problem. Current approaches to reconstruct the tracer concentration from its measurements are either adapted to image characteristics of MPI but suffer from higher computational complexity and slower convergence or are fast but lack in the image quality of the reconstructed images.
In this work we propose a novel MPI reconstruction method to combine the advantages of both approaches into a single algorithm. The underlying sparsity prior is based on an undecimated wavelet transform and is integrated into a fast row-action framework to solve the corresponding MPI minimization problem.
Its performance is numerically evaluated against a classical FISTA (Fast Iterative Shrinkage-Thresholding Algorithm) approach on simulated and real MPI data. The experimental results show that the proposed method increases image quality with significantly reduced computation times.
In comparison to state-of-the-art MPI reconstruction methods, our approach shows better reconstruction results and at the same time accelerates the convergence rate of the underlying row-action algorithm.
磁性粒子成像(MPI)是一种能够可视化磁性纳米粒子时空分布的临床前成像技术。这个快速和动态过程的图像重建依赖于有效地解决病态逆问题。当前从测量结果重建示踪剂浓度的方法要么适应 MPI 的图像特征,但计算复杂度更高,收敛速度更慢,要么速度很快,但重建图像的质量较差。
在这项工作中,我们提出了一种新的 MPI 重建方法,将两种方法的优点结合到一个单一的算法中。基础稀疏先验基于非抽样小波变换,并集成到一个快速行操作框架中,以解决相应的 MPI 最小化问题。
在模拟和真实 MPI 数据上,对其性能进行了数值评估,与经典的 FISTA(Fast Iterative Shrinkage-Thresholding Algorithm)方法进行了比较。实验结果表明,所提出的方法提高了图像质量,同时大大减少了计算时间。
与最先进的 MPI 重建方法相比,我们的方法显示出更好的重建结果,同时加速了基础行操作算法的收敛速度。