University of Michigan, Ann Arbor.
Pfizer Inc., Groton, Connecticut.
Arthritis Rheumatol. 2021 Nov;73(11):2127-2137. doi: 10.1002/art.41781. Epub 2021 Sep 22.
There is increasing demand for prediction of chronic pain treatment outcomes using machine-learning models, in order to improve suboptimal pain management. In this exploratory study, we used baseline brain functional connectivity patterns from chronic pain patients with fibromyalgia (FM) to predict whether a patient would respond differentially to either milnacipran or pregabalin, 2 drugs approved by the US Food and Drug Administration for the treatment of FM.
FM patients participated in 2 separate double-blind, placebo-controlled crossover studies, one evaluating milnacipran (n = 15) and one evaluating pregabalin (n = 13). Functional magnetic resonance imaging during rest was performed before treatment to measure intrinsic functional brain connectivity in several brain regions involved in pain processing. A support vector machine algorithm was used to classify FM patients as responders, defined as those with a ≥20% improvement in clinical pain, to either milnacipran or pregabalin.
Connectivity patterns involving the posterior cingulate cortex (PCC) and dorsolateral prefrontal cortex (DLPFC) individually classified pregabalin responders versus milnacipran responders with 77% accuracy. Performance of this classification improved when both PCC and DLPFC connectivity patterns were combined, resulting in a 92% classification accuracy. These results were not related to confounding factors, including head motion, scanner sequence, or hardware status. Connectivity patterns failed to differentiate drug nonresponders across the 2 studies.
Our findings indicate that brain functional connectivity patterns used in a machine-learning framework differentially predict clinical response to pregabalin and milnacipran in patients with chronic pain. These findings highlight the promise of machine learning in pain prognosis and treatment prediction.
为了改善疼痛管理不理想的情况,利用机器学习模型预测慢性疼痛治疗结果的需求日益增加。在这项探索性研究中,我们使用纤维肌痛(FM)慢性疼痛患者的基线大脑功能连接模式来预测患者对米那普仑或普瑞巴林(美国食品和药物管理局批准用于治疗 FM 的两种药物)的反应是否存在差异。
FM 患者参加了两项独立的双盲、安慰剂对照交叉研究,一项评估米那普仑(n=15),一项评估普瑞巴林(n=13)。在治疗前进行静息状态下的功能磁共振成像,以测量参与疼痛处理的几个大脑区域的固有功能大脑连接。使用支持向量机算法将 FM 患者分为反应者,定义为临床疼痛改善≥20%的患者,分别接受米那普仑或普瑞巴林治疗。
单独使用后扣带回皮层(PCC)和背外侧前额叶皮层(DLPFC)的连接模式以 77%的准确率对普瑞巴林反应者与米那普仑反应者进行分类。当结合 PCC 和 DLPFC 的连接模式时,该分类的性能得到提高,达到 92%的分类准确率。这些结果与混杂因素无关,包括头部运动、扫描序列或硬件状态。连接模式无法区分两项研究中的药物无反应者。
我们的发现表明,在机器学习框架中使用大脑功能连接模式可以不同地预测慢性疼痛患者对普瑞巴林和米那普仑的临床反应。这些发现突出了机器学习在疼痛预后和治疗预测中的应用前景。