Suppr超能文献

大规模生物分子调控网络的全局镇定控制。

Global stabilizing control of large-scale biomolecular regulatory networks.

机构信息

Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.

Flint Research, Flint Technologies Inc, New Castle County, DE 19808, USA.

出版信息

Bioinformatics. 2023 Jan 1;39(1). doi: 10.1093/bioinformatics/btad045.

Abstract

MOTIVATION

Cellular behavior is determined by complex non-linear interactions between numerous intracellular molecules that are often represented by Boolean network models. To achieve a desired cellular behavior with minimal intervention, we need to identify optimal control targets that can drive heterogeneous cellular states to the desired phenotypic cellular state with minimal node intervention. Previous attempts to realize such global stabilization were based solely on either network structure information or simple linear dynamics. Other attempts based on non-linear dynamics are not scalable.

RESULTS

Here, we investigate the underlying relationship between structurally identified control targets and optimal global stabilizing control targets based on non-linear dynamics. We discovered that optimal global stabilizing control targets can be identified by analyzing the dynamics between structurally identified control targets. Utilizing these findings, we developed a scalable global stabilizing control framework using both structural and dynamic information. Our framework narrows down the search space based on strongly connected components and feedback vertex sets then identifies global stabilizing control targets based on the canalization of Boolean network dynamics. We find that the proposed global stabilizing control is superior with respect to the number of control target nodes, scalability, and computational complexity.

AVAILABILITY AND IMPLEMENTATION

We provide a GitHub repository that contains the DCGS framework written in Python as well as biological random Boolean network datasets (https://github.com/sugyun/DCGS).

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

细胞行为由众多细胞内分子之间复杂的非线性相互作用决定,这些分子通常通过布尔网络模型表示。为了以最小的干预实现所需的细胞行为,我们需要确定最佳的控制目标,这些目标可以以最小的节点干预将异质细胞状态驱动到所需的表型细胞状态。以前实现这种全局稳定化的尝试仅基于网络结构信息或简单的线性动力学。基于非线性动力学的其他尝试则不可扩展。

结果

在这里,我们根据非线性动力学研究了结构上确定的控制目标和最佳全局稳定控制目标之间的潜在关系。我们发现,通过分析结构上确定的控制目标之间的动力学,可以确定最佳的全局稳定控制目标。利用这些发现,我们利用结构和动态信息开发了一个可扩展的全局稳定控制框架。我们的框架基于强连通分量和反馈顶点集缩小搜索空间,然后根据布尔网络动力学的渠化来确定全局稳定控制目标。我们发现,所提出的全局稳定控制在控制目标节点数量、可扩展性和计算复杂度方面具有优势。

可用性和实现

我们提供了一个包含用 Python 编写的 DCGS 框架以及生物随机布尔网络数据集的 GitHub 存储库(https://github.com/sugyun/DCGS)。

补充信息

补充数据可在 Bioinformatics 在线获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验