Drug Discovery and Structural Biology Group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan.
Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Punjab, Pakistan.
Proteins. 2021 Sep;89(9):1193-1204. doi: 10.1002/prot.26141. Epub 2021 May 21.
Salmonellae are foodborne pathogens and the major cause of gastroenteritis in humans. Salmonellae express multidrug efflux transporters that play a key role in their drug resistance, which is becoming an increasing problem for therapeutic intervention. Despite their biomedical importance, the mechanisms underlying substrate transport by multidrug efflux transporters remain poorly understood. Here, we describe the first characterization of a multidrug transporter belonging to the major facilitator superfamily from the genus Salmonella. We show that several clinical Salmonella Typhi (S. Typhi) isolates constitutively express the styMdtM (STY4874) gene, which encodes a known multidrug-resistance (MDR) transporter. Guided by the structure of the Escherichia coli (E. coli) homolog, we studied two residues critical for substrate transport, Asp25 and Arg111. Mutation of Asp25 to glutamate did not affect the transport function of styMdtM, whereas mutation to alanine reduced its transport activity, suggesting that a negative charge at this position is critical for substrate translocation across the membrane. Substrate-affinity measurements by intrinsic fluorescence spectroscopy showed that the Asp25Ala mutant retained its capacity to bind substrate, albeit at a lower level. Mutation of Arg111 to alanine resulted in a decrease in secondary structure content of the transporter, and mutation to lysine completely destabilized the structure of the transporter. A homology model of styMdtM suggests that Arg111 is important for stabilizing the transmembrane domain by mediating necessary interactions between neighboring helices. Together, our studies provide new structural and mechanistic insights into the Salmonella MDR transporter styMdtM.
沙门氏菌是食源性病原体,也是人类肠胃炎的主要病因。沙门氏菌表达多种药物外排转运蛋白,这些转运蛋白在其耐药性中起着关键作用,这对治疗干预来说是一个日益严重的问题。尽管它们具有重要的生物医学意义,但多药外排转运蛋白的底物转运机制仍知之甚少。在这里,我们描述了首次对来自沙门氏菌属的主要促进因子超家族的多药转运蛋白进行了特征描述。我们表明,几种临床分离的伤寒沙门氏菌(S. Typhi)菌株持续表达 styMdtM(STY4874)基因,该基因编码一种已知的多药耐药(MDR)转运蛋白。在大肠杆菌(E. coli)同源物结构的指导下,我们研究了对底物转运至关重要的两个残基,天冬氨酸 25 和精氨酸 111。将天冬氨酸 25 突变为谷氨酸不会影响 styMdtM 的转运功能,而突变为丙氨酸则降低了其转运活性,这表明该位置的负电荷对于跨膜底物易位至关重要。通过本征荧光光谱法进行的底物亲和力测量表明,Asp25Ala 突变体保留了结合底物的能力,尽管结合水平较低。将精氨酸 111 突变为丙氨酸会导致转运体的二级结构含量降低,而突变为赖氨酸则会使转运体的结构完全失稳。styMdtM 的同源模型表明,Arg111 通过介导相邻螺旋之间的必要相互作用,对稳定跨膜结构域很重要。总之,我们的研究为沙门氏菌 MDR 转运蛋白 styMdtM 提供了新的结构和机制见解。