Department of Psychology.
Psychol Rev. 2021 Oct;128(5):803-823. doi: 10.1037/rev0000268. Epub 2021 May 13.
In eye-movement control during reading, advanced process-oriented models have been developed to reproduce behavioral data. So far, model complexity and large numbers of model parameters prevented rigorous statistical inference and modeling of interindividual differences. Here we propose a Bayesian approach to both problems for one representative computational model of sentence reading (SWIFT; Engbert et al., 2005, pp. 777-813). We used experimental data from 36 subjects who read the text in a normal and one of four manipulated text layouts (e.g., mirrored and scrambled letters). The SWIFT model was fitted to subjects and experimental conditions individually to investigate between-subject variability. Based on posterior distributions of model parameters, fixation probabilities and durations are reliably recovered from simulated data and reproduced for withheld empirical data, at both the experimental condition and subject levels. A subsequent statistical analysis of model parameters across reading conditions generates model-driven explanations for observable effects between conditions. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
在阅读中的眼球运动控制中,已经开发出了先进的面向过程的模型来再现行为数据。到目前为止,模型的复杂性和大量的模型参数阻碍了严格的统计推断和个体间差异的建模。在这里,我们针对句子阅读的一个代表性计算模型(SWIFT;Engbert 等人,2005 年,第 777-813 页)提出了一种贝叶斯方法来解决这两个问题。我们使用了来自 36 名受试者的实验数据,他们以正常和四种操纵文本布局之一(例如,镜像和乱序字母)阅读文本。SWIFT 模型分别针对每个受试者和实验条件进行拟合,以研究受试者之间的变异性。基于模型参数的后验分布,可以从模拟数据中可靠地恢复注视概率和注视持续时间,并将其复制到保留的经验数据中,无论是在实验条件还是在受试者水平上。随后对阅读条件下的模型参数进行的统计分析,为条件之间可观察到的影响生成了模型驱动的解释。(PsycInfo 数据库记录(c)2021 APA,保留所有权利)。