Suppr超能文献

激发三量子比特的全自监督浅层量子学习网络在脑肿瘤分割中的应用。

Qutrit-Inspired Fully Self-Supervised Shallow Quantum Learning Network for Brain Tumor Segmentation.

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Nov;33(11):6331-6345. doi: 10.1109/TNNLS.2021.3077188. Epub 2022 Oct 27.

Abstract

Classical self-supervised networks suffer from convergence problems and reduced segmentation accuracy due to forceful termination. Qubits or bilevel quantum bits often describe quantum neural network models. In this article, a novel self-supervised shallow learning network model exploiting the sophisticated three-level qutrit-inspired quantum information system, referred to as quantum fully self-supervised neural network (QFS-Net), is presented for automated segmentation of brain magnetic resonance (MR) images. The QFS-Net model comprises a trinity of a layered structure of qutrits interconnected through parametric Hadamard gates using an eight-connected second-order neighborhood-based topology. The nonlinear transformation of the qutrit states allows the underlying quantum neural network model to encode the quantum states, thereby enabling a faster self-organized counterpropagation of these states between the layers without supervision. The suggested QFS-Net model is tailored and extensively validated on the Cancer Imaging Archive (TCIA) dataset collected from the Nature repository. The experimental results are also compared with state-of-the-art supervised (U-Net and URes-Net architectures) and the self-supervised QIS-Net model and its classical counterpart. Results shed promising segmented outcomes in detecting tumors in terms of dice similarity and accuracy with minimum human intervention and computational resources. The proposed QFS-Net is also investigated on natural gray-scale images from the Berkeley segmentation dataset and yields promising outcomes in segmentation, thereby demonstrating the robustness of the QFS-Net model.

摘要

经典的自监督网络由于强制终止而存在收敛问题和分割精度降低。量子比特或双层量子比特通常描述量子神经网络模型。在本文中,提出了一种新颖的自监督浅层学习网络模型,利用复杂的三级量子比特启发式量子信息系统,称为量子全自监督神经网络(QFS-Net),用于自动分割脑磁共振(MR)图像。QFS-Net 模型由三层量子比特的层状结构组成,通过使用基于 8 连通二阶邻域的拓扑结构的参数 Hadamard 门相互连接。量子比特状态的非线性变换允许底层量子神经网络模型对量子状态进行编码,从而在没有监督的情况下在层之间更快地自组织这些状态的反向传播。所提出的 QFS-Net 模型是根据从 Nature 存储库收集的癌症成像档案 (TCIA) 数据集进行定制和广泛验证的。实验结果还与最先进的监督(U-Net 和 URes-Net 架构)和自监督 QIS-Net 模型及其经典对应物进行了比较。结果表明,在检测肿瘤方面,基于骰子相似性和准确性的分割结果很有前景,并且需要的人为干预和计算资源最少。还对来自伯克利分割数据集的自然灰度图像进行了 QFS-Net 研究,并在分割方面取得了有希望的结果,从而证明了 QFS-Net 模型的稳健性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验