Suppr超能文献

基于深度学习和正弦余弦适应度灰狼优化算法的脑肿瘤检测与分类

Brain Tumor Detection and Classification Using Deep Learning and Sine-Cosine Fitness Grey Wolf Optimization.

作者信息

ZainEldin Hanaa, Gamel Samah A, El-Kenawy El-Sayed M, Alharbi Amal H, Khafaga Doaa Sami, Ibrahim Abdelhameed, Talaat Fatma M

机构信息

Computer Engineering and Control Systems Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt.

Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology, Mansoura 35111, Egypt.

出版信息

Bioengineering (Basel). 2022 Dec 22;10(1):18. doi: 10.3390/bioengineering10010018.

Abstract

Diagnosing a brain tumor takes a long time and relies heavily on the radiologist's abilities and experience. The amount of data that must be handled has increased dramatically as the number of patients has increased, making old procedures both costly and ineffective. Many researchers investigated a variety of algorithms for detecting and classifying brain tumors that were both accurate and fast. Deep Learning (DL) approaches have recently been popular in developing automated systems capable of accurately diagnosing or segmenting brain tumors in less time. DL enables a pre-trained Convolutional Neural Network (CNN) model for medical images, specifically for classifying brain cancers. The proposed Brain Tumor Classification Model based on CNN (BCM-CNN) is a CNN hyperparameters optimization using an adaptive dynamic sine-cosine fitness grey wolf optimizer (ADSCFGWO) algorithm. There is an optimization of hyperparameters followed by a training model built with Inception-ResnetV2. The model employs commonly used pre-trained models (Inception-ResnetV2) to improve brain tumor diagnosis, and its output is a binary 0 or 1 (0: Normal, 1: Tumor). There are primarily two types of hyperparameters: (i) hyperparameters that determine the underlying network structure; (ii) a hyperparameter that is responsible for training the network. The ADSCFGWO algorithm draws from both the sine cosine and grey wolf algorithms in an adaptable framework that uses both algorithms' strengths. The experimental results show that the BCM-CNN as a classifier achieved the best results due to the enhancement of the CNN's performance by the CNN optimization's hyperparameters. The BCM-CNN has achieved 99.98% accuracy with the BRaTS 2021 Task 1 dataset.

摘要

诊断脑肿瘤需要很长时间,并且严重依赖放射科医生的能力和经验。随着患者数量的增加,必须处理的数据量急剧增加,使得旧的程序既昂贵又低效。许多研究人员研究了各种用于检测和分类脑肿瘤的算法,这些算法既准确又快速。深度学习(DL)方法最近在开发能够在更短时间内准确诊断或分割脑肿瘤的自动化系统方面很受欢迎。DL 为医学图像启用了预训练的卷积神经网络(CNN)模型,特别是用于对脑癌进行分类。所提出的基于 CNN 的脑肿瘤分类模型(BCM-CNN)是一种使用自适应动态正弦余弦适应度灰狼优化器(ADSCFGWO)算法的 CNN 超参数优化。首先对超参数进行优化,然后使用 Inception-ResnetV2 构建训练模型。该模型采用常用的预训练模型(Inception-ResnetV2)来改进脑肿瘤诊断,其输出为二进制 0 或 1(0:正常,1:肿瘤)。主要有两种类型的超参数:(i)决定基础网络结构的超参数;(ii)负责训练网络的超参数。ADSCFGWO 算法在一个使用两种算法优势的自适应框架中借鉴了正弦余弦算法和灰狼算法。实验结果表明,由于 CNN 优化的超参数增强了 CNN 的性能,BCM-CNN 作为分类器取得了最佳结果。BCM-CNN 在 BRaTS 2021 任务 1 数据集上的准确率达到了 99.98%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/955f/9854739/789a75e590af/bioengineering-10-00018-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验