Yang Tiejun, Zhou Yudan, Li Lei, Zhu Chunhua
Key Laboratory of Grain Information Processing and Control (Henan University of Technology), Ministry of Education, China.
School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou, China.
J Xray Sci Technol. 2020;28(4):709-726. doi: 10.3233/XST-200650.
Brain tumor segmentation plays an important role in assisting diagnosis of disease, treatment plan planning, and surgical navigation.
This study aims to improve the accuracy of tumor boundary segmentation using the multi-scale U-Net network.
In this study, a novel U-Net with dilated convolution (DCU-Net) structure is proposed for brain tumor segmentation based on the classic U-Net structure. First, the MR brain tumor images are pre-processed to alleviate the class imbalance problem by reducing the input of the background pixels. Then, the multi-scale spatial pyramid pooling is used to replace the max pooling at the end of the down-sampling path. It can expand the feature receptive field while maintaining image resolution. Finally, a dilated convolution residual block is combined to improve the skip connections in the training networks to improve the network's ability to recognize the tumor details.
The proposed model has been evaluated using the Brain Tumor Segmentation (BRATS) 2018 Challenge training dataset and achieved the dice similarity coefficients (DSC) score of 0.91, 0.78 and 0.83 for whole tumor, core tumor and enhancing tumor segmentation, respectively.
The experiment results indicate that the proposed model yields a promising performance in automated brain tumor segmentation.
脑肿瘤分割在辅助疾病诊断、治疗方案规划和手术导航中发挥着重要作用。
本研究旨在使用多尺度U-Net网络提高肿瘤边界分割的准确性。
在本研究中,基于经典U-Net结构提出了一种具有扩张卷积的新型U-Net(DCU-Net)结构用于脑肿瘤分割。首先,对磁共振脑肿瘤图像进行预处理,通过减少背景像素的输入来缓解类别不平衡问题。然后,使用多尺度空间金字塔池化来替换下采样路径末端的最大池化。它可以在保持图像分辨率的同时扩大特征感受野。最后,结合扩张卷积残差块来改进训练网络中的跳跃连接,以提高网络识别肿瘤细节的能力。
使用脑肿瘤分割(BRATS)2018挑战赛训练数据集对所提出的模型进行了评估,全肿瘤、核心肿瘤和强化肿瘤分割的骰子相似系数(DSC)得分分别达到0.91、0.78和0.83。
实验结果表明,所提出的模型在自动脑肿瘤分割中具有良好的性能。