Suppr超能文献

疫苗效力估计中的暴露错误分类偏倚。

Exposure misclassification bias in the estimation of vaccine effectiveness.

机构信息

Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland.

Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland.

出版信息

PLoS One. 2021 May 13;16(5):e0251622. doi: 10.1371/journal.pone.0251622. eCollection 2021.

Abstract

In epidemiology, a typical measure of interest is the risk of disease conditional upon exposure. A common source of bias in the estimation of risks and risk ratios is misclassification. Exposure misclassification affects the measurement of exposure, i.e. the variable one conditions on. This article explains how to assess biases under non-differential exposure misclassification when estimating vaccine effectiveness, i.e. the vaccine-induced relative reduction in the risk of disease. The problem can be described in terms of three binary variables: the unobserved true exposure status, the observed but potentially misclassified exposure status, and the observed true disease status. The bias due to exposure misclassification is quantified by the difference between the naïve estimand defined as one minus the risk ratio comparing individuals observed as vaccinated with individuals observed as unvaccinated, and the vaccine effectiveness defined as one minus the risk ratio comparing truly vaccinated with truly unvaccinated. The magnitude of the bias depends on five factors: the risks of disease in the truly vaccinated and the truly unvaccinated, the sensitivity and specificity of exposure measurement, and vaccination coverage. Non-differential exposure misclassification bias is always negative. In practice, if the sensitivity and specificity are known or estimable from external sources, the true risks and the vaccination coverage can be estimated from the observed data and, thus, the estimation of vaccine effectiveness based on the observed risks can be corrected for exposure misclassification. When analysing risks under misclassification, careful consideration of conditional probabilities is crucial.

摘要

在流行病学中,一个典型的研究兴趣指标是在暴露条件下疾病的风险。在风险和风险比的估计中,一个常见的偏倚来源是分类错误。暴露分类错误会影响暴露的测量,即你所依赖的变量。本文解释了当估计疫苗效力(即疫苗引起的疾病风险相对降低)时,如何在非差异暴露分类错误下评估偏倚。这个问题可以用三个二项变量来描述:未观察到的真实暴露状态、观察到但可能被错误分类的暴露状态,以及观察到的真实疾病状态。暴露分类错误导致的偏差可以通过以下两种方法的差异来量化:一种是简单估计量,定义为接种组与未接种组个体的风险比减去 1;另一种是疫苗效力,定义为接种组与未接种组个体的风险比减去 1。偏差的大小取决于五个因素:真正接种和未接种者的疾病风险、暴露测量的灵敏度和特异性,以及疫苗接种覆盖率。非差异暴露分类错误偏倚总是负的。在实践中,如果灵敏度和特异性可以从外部来源获知或估计,那么可以从观察到的数据中估计真实风险和疫苗接种覆盖率,从而可以纠正基于观察到的风险的疫苗效力估计中的暴露分类错误。在分析分类错误下的风险时,仔细考虑条件概率至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/608b/8118540/8ae7d153d235/pone.0251622.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验