P95 Epidemiology and Pharmacovigilance, Leuven, Belgium.
GSK Vaccines, Amsterdam, The Netherlands.
PLoS One. 2018 Jun 15;13(6):e0199180. doi: 10.1371/journal.pone.0199180. eCollection 2018.
Studies of vaccine effectiveness (VE) rely on accurate identification of vaccination and cases of vaccine-preventable disease. In practice, diagnostic tests, clinical case definitions and vaccination records often present inaccuracies, leading to biased VE estimates. Previous studies investigated the impact of non-differential disease misclassification on VE estimation.
We explored, through simulation, the impact of non-differential and differential disease- and exposure misclassification when estimating VE using cohort, case-control, test-negative case-control and case-cohort designs. The impact of misclassification on the estimated VE is demonstrated for VE studies on childhood seasonal influenza and pertussis vaccination. We additionally developed a web-application graphically presenting bias for user-selected parameters.
Depending on the scenario, the misclassification parameters had differing impacts. Decreased exposure specificity had greatest impact for influenza VE estimation when vaccination coverage was low. Decreased exposure sensitivity had greatest impact for pertussis VE estimation for which high vaccination coverage is typically achieved. The impact of the exposure misclassification parameters was found to be more noticeable than that of the disease misclassification parameters. When misclassification is limited, all study designs perform equally. In case of substantial (differential) disease misclassification, the test-negative design performs worse.
Misclassification can lead to significant bias in VE estimates and its impact strongly depends on the scenario. We developed a web-application for assessing the potential (joint) impact of possibly differential disease- and exposure misclassification that can be modified by users to their own study scenario. Our results and the simulation tool may be used to guide better design, conduct and interpretation of future VE studies.
疫苗效力 (VE) 的研究依赖于对疫苗接种和可预防疾病病例的准确识别。在实践中,诊断测试、临床病例定义和疫苗接种记录通常存在不准确之处,导致 VE 估计值存在偏差。先前的研究调查了非差异疾病分类错误对 VE 估计的影响。
我们通过模拟探索了当使用队列、病例对照、阴性检测病例对照和病例队列设计估计 VE 时,非差异和差异疾病和暴露分类错误对 VE 估计的影响。通过对儿童季节性流感和百日咳疫苗接种 VE 研究进行模拟,展示了分类错误对估计 VE 的影响。我们还开发了一个网络应用程序,以图形方式展示用户选择的参数的偏差。
根据情况的不同,分类错误参数的影响也不同。当疫苗覆盖率较低时,暴露特异性降低对流感 VE 估计的影响最大。当高疫苗覆盖率通常可实现时,暴露敏感性降低对百日咳 VE 估计的影响最大。暴露分类错误参数的影响被发现比疾病分类错误参数的影响更明显。当分类错误有限时,所有研究设计的表现都一样。在存在大量(差异)疾病分类错误的情况下,阴性检测设计的表现更差。
分类错误会导致 VE 估计值出现显著偏差,其影响强烈依赖于具体情况。我们开发了一个网络应用程序,用于评估可能的(联合)差异疾病和暴露分类错误的潜在影响,用户可以根据自己的研究情况对其进行修改。我们的结果和模拟工具可以用于指导未来 VE 研究的更好设计、实施和解释。