Suppr超能文献

仿鲹多功能压电机器人鱼和能量采集器。

Trout-like multifunctional piezoelectric robotic fish and energy harvester.

机构信息

G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States of America.

出版信息

Bioinspir Biomim. 2021 Jun 23;16(4). doi: 10.1088/1748-3190/ac011e.

Abstract

This work presents our experimental studies on a trout-inspired multifunctional robotic fish as an underwater swimmer and energy harvester. Fiber-based flexible piezoelectric composites with interdigitated electrodes, specifically macro-fiber composite (MFC) structures, strike a balance between the deformation and actuation force capabilities to generate hydrodynamic propulsion without requiring additional mechanisms for motion amplification. A pair of MFC laminates bracketing a passive fin functions like artificial muscle when driven out of phase to expand and contract on each side to create bending. The trout-like robotic fish design explored in this work was tested for both unconstrained swimming in a quiescent water tank and under imposed flow in a water tunnel to estimate the maximum swimming speed, which exceeded 0.25 m s, i.e., 0.8 body lengths per second. Hydrodynamic thrust characterization was also performed in a quiescent water setting, revealing that the fin can easily produce tens of mN of thrust, similar to its biological counterpart for comparable swimming speeds. Overall, the prototype presented here generates thrust levels higher than other smart material-based concepts (such as soft polymeric material-based actuators which provide large deformation but low force), while offering simple design, geometric scalability, and silent operation unlike motor-based robotic fish (which often use bulky actuators and complex mechanisms). Additionally, energy harvesting experiments were performed to convert flow-induced vibrations in the wake of a cylindrical bluff body (for different diameters) in a water tunnel. The shed vortex frequency range for a set of bluff body diameters covered the first vibration mode of the tail, yielding an average electrical power of 120 μW at resonance for a flow speed around 0.3 m sand a bluff body diameter of 28.6 mm. Such low-power electricity can find applications to power small sensors of the robotic fish in scenarios such as ecological monitoring, among others.

摘要

本工作介绍了我们在受鳜鱼启发的多功能机器鱼方面的实验研究,该机器鱼既是水下游泳者,又是能量收集器。基于纤维的柔性压电复合材料具有叉指电极,特别是宏观纤维复合材料(MFC)结构,在变形和驱动力能力之间取得平衡,无需额外的运动放大机构即可产生水动力推进。一对夹持无源鱼鳍的 MFC 层压板在异相驱动时的行为类似于人造肌肉,在每一侧扩展和收缩以产生弯曲。本工作中探索的仿鳜鱼机器鱼设计在静止水箱中进行了无约束游泳测试,并在水隧道中进行了强制流测试,以估计最大游泳速度,超过 0.25 m/s,即 0.8 体长/秒。在静止水中还进行了水动力推力特性测试,结果表明,鱼鳍很容易产生数十毫牛顿的推力,与类似游泳速度的生物对应物相当。总的来说,与其他基于智能材料的概念(如提供大变形但低力的软聚合物材料基执行器)相比,本文提出的原型产生的推力水平更高,同时具有简单的设计、几何可扩展性和无声操作,而不像基于电机的机器鱼(通常使用庞大的执行器和复杂的机构)。此外,还进行了能量收集实验,以将水隧道中圆柱钝体(不同直径)尾部的流致振动转换为电能。一组钝体直径的涡脱落频率范围涵盖了鱼尾的第一振动模态,在约 0.3 m/s 的流速和 28.6 mm 的钝体直径下,在共振时产生平均 120 μW 的电功率。如此低功率的电能可以在生态监测等场景中为机器鱼的小型传感器提供动力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验