Suppr超能文献

智能手机 RGB 光谱灵敏度函数的压缩恢复。

Compressive recovery of smartphone RGB spectral sensitivity functions.

出版信息

Opt Express. 2021 Apr 12;29(8):11947-11961. doi: 10.1364/OE.420069.

Abstract

Spectral response (or sensitivity) functions of a three-color image sensor (or trichromatic camera) allow a mapping from spectral stimuli to RGB color values. Like biological photosensors, digital RGB spectral responses are device dependent and significantly vary from model to model. Thus, the information on the RGB spectral response functions of a specific device is vital in a variety of computer vision as well as mobile health (mHealth) applications. Theoretically, spectral response functions can directly be measured with sophisticated calibration equipment in a specialized laboratory setting, which is not easily accessible for most application developers. As a result, several mathematical methods have been proposed relying on standard color references. Typical optimization frameworks with constraints are often complicated, requiring a large number of colors. We report a compressive sensing framework in the frequency domain for accurately predicting RGB spectral response functions only with several primary colors. Using a scientific camera, we first validate the estimation method with direct spectral sensitivity measurements and ensure that the root mean square errors between the ground truth and recovered RGB spectral response functions are negligible. We further recover the RGB spectral response functions of smartphones and validate with an expanded color checker reference. We expect that this simple yet reliable estimation method of RGB spectral sensitivity can easily be applied for color calibration and standardization in machine vision, hyperspectral filters, and mHealth applications that capitalize on the built-in cameras of smartphones.

摘要

三色图像传感器(或三基色相机)的光谱响应(或灵敏度)函数允许将光谱刺激映射到 RGB 颜色值。与生物光传感器类似,数字 RGB 光谱响应取决于设备,并且在不同型号之间差异很大。因此,特定设备的 RGB 光谱响应函数的信息在各种计算机视觉以及移动健康(mHealth)应用中至关重要。从理论上讲,可以在专门的实验室环境中使用复杂的校准设备直接测量光谱响应函数,但这对于大多数应用程序开发人员来说并不容易。因此,已经提出了几种基于标准颜色参考的数学方法。具有约束的典型优化框架通常很复杂,需要大量颜色。我们报告了一种频域压缩感知框架,仅使用几种原色即可准确预测 RGB 光谱响应函数。我们首先使用科学相机通过直接光谱灵敏度测量来验证估计方法,并确保真实 RGB 光谱响应函数和恢复的 RGB 光谱响应函数之间的均方根误差可以忽略不计。我们进一步恢复智能手机的 RGB 光谱响应函数,并使用扩展的颜色检查器参考进行验证。我们希望这种简单可靠的 RGB 光谱灵敏度估计方法可以轻松应用于机器视觉、高光谱滤波器和利用智能手机内置摄像头的 mHealth 应用中的颜色校准和标准化。

相似文献

1
Compressive recovery of smartphone RGB spectral sensitivity functions.
Opt Express. 2021 Apr 12;29(8):11947-11961. doi: 10.1364/OE.420069.
2
Differentiating Biological Colours with Few and Many Sensors: Spectral Reconstruction with RGB and Hyperspectral Cameras.
PLoS One. 2015 May 12;10(5):e0125817. doi: 10.1371/journal.pone.0125817. eCollection 2015.
6
Measurement and Estimation of Spectral Sensitivity Functions for Mobile Phone Cameras.
Sensors (Basel). 2021 Jul 22;21(15):4985. doi: 10.3390/s21154985.
7
Spectral sensitivity estimation of trichromatic camera based on orthogonal test and window filtering.
Opt Express. 2020 Sep 14;28(19):28085-28100. doi: 10.1364/OE.401496.
8
RGB calibration for color image analysis in machine vision.
IEEE Trans Image Process. 1996;5(10):1414-22. doi: 10.1109/83.536890.

引用本文的文献

1
Radiomic identification of anemia features in monochromatic conjunctiva photographs in school-age children.
Biophotonics Discov. 2025 Apr;2(2). doi: 10.1117/1.bios.2.2.022303. Epub 2025 Apr 15.
2
Machine reading and recovery of colors for hemoglobin-related bioassays and bioimaging.
Sci Adv. 2025 Jun 6;11(23):eadt4831. doi: 10.1126/sciadv.adt4831. Epub 2025 Jun 4.
5
Racially fair pupillometry measurements for RGB smartphone cameras using the far red spectrum.
Sci Rep. 2023 Aug 24;13(1):13841. doi: 10.1038/s41598-023-40796-0.
6
mHealth hyperspectral learning for instantaneous spatiospectral imaging of hemodynamics.
PNAS Nexus. 2023 Mar 29;2(4):pgad111. doi: 10.1093/pnasnexus/pgad111. eCollection 2023 Apr.

本文引用的文献

1
mHealth spectroscopy of blood hemoglobin with spectral super-resolution.
Optica. 2020 Jun 20;7(6):563-573. doi: 10.1364/optica.390409.
2
A Pearl Spectrometer.
Nano Lett. 2021 Jan 27;21(2):921-930. doi: 10.1021/acs.nanolett.0c03618. Epub 2020 Nov 12.
3
Spectral sensitivity estimation of trichromatic camera based on orthogonal test and window filtering.
Opt Express. 2020 Sep 14;28(19):28085-28100. doi: 10.1364/OE.401496.
4
Multicolor fluorescence imaging using a single RGB-IR CMOS sensor for cancer detection with smURFP-labeled probiotics.
Biomed Opt Express. 2020 May 8;11(6):2951-2963. doi: 10.1364/BOE.391417. eCollection 2020 Jun 1.
5
Standardized spectral and radiometric calibration of consumer cameras.
Opt Express. 2019 Jul 8;27(14):19075-19101. doi: 10.1364/OE.27.019075.
6
Single-nanowire spectrometers.
Science. 2019 Sep 6;365(6457):1017-1020. doi: 10.1126/science.aax8814.
7
Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning.
Nat Biomed Eng. 2018 Mar;2(3):158-164. doi: 10.1038/s41551-018-0195-0. Epub 2018 Feb 19.
8
Taking connected mobile-health diagnostics of infectious diseases to the field.
Nature. 2019 Feb;566(7745):467-474. doi: 10.1038/s41586-019-0956-2. Epub 2019 Feb 27.
9
Estimation of the camera spectral sensitivity function using neural learning and architecture.
J Opt Soc Am A Opt Image Sci Vis. 2018 Jun 1;35(6):850-858. doi: 10.1364/JOSAA.35.000850.
10
Data-driven imaging of tissue inflammation using RGB-based hyperspectral reconstruction toward personal monitoring of dermatologic health.
Biomed Opt Express. 2017 Oct 26;8(11):5282-5296. doi: 10.1364/BOE.8.005282. eCollection 2017 Nov 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验