Suppr超能文献

一种用于高效定量CT图像质量评估和协议优化的基于网络的软件平台。

A Web-Based Software Platform for Efficient and Quantitative CT Image Quality Assessment and Protocol Optimization.

作者信息

Fan Mingdong, Thayib Theodore, Ren Liqiang, Hsieh Scott, McCollough Cynthia, Holmes David, Yu Lifeng

机构信息

Department of Radiology, Mayo Clinic, Rochester, MN, 55901, USA.

出版信息

Proc SPIE Int Soc Opt Eng. 2021 Feb;11595. doi: 10.1117/12.2582123. Epub 2021 Feb 15.

Abstract

Channelized Hotelling observer (CHO), which has been shown to be well correlated with human observer performance in many clinical CT tasks, has a great potential to become the method of choice for objective image quality assessment. However, the use of CHO in clinical CT is still quite limited, mainly due to its complexity in measurement and calculation in practice, and the lack of access to an efficient and validated software tool for most clinical users. In this work, a web-based software platform for CT image quality assessment and protocol optimization (CTPro) was introduced. A validated CHO tool, along with other common image quality assessment tools, was made readily accessible through this web platform for clinical users and researchers without the need of installing additional software. An example of its application to evaluation of convolutional-neural-network (CNN)-based denoising was demonstrated.

摘要

通道化霍特林观察者(CHO)在许多临床CT任务中已被证明与人类观察者的表现具有良好的相关性,它极有可能成为客观图像质量评估的首选方法。然而,CHO在临床CT中的应用仍然相当有限,主要原因在于其在实际测量和计算中的复杂性,以及大多数临床用户无法获得高效且经过验证的软件工具。在这项工作中,引入了一个基于网络的CT图像质量评估和协议优化软件平台(CTPro)。通过这个网络平台,临床用户和研究人员无需安装额外软件,就能轻松使用经过验证的CHO工具以及其他常见的图像质量评估工具。展示了其在基于卷积神经网络(CNN)的去噪评估中的应用实例。

相似文献

1
A Web-Based Software Platform for Efficient and Quantitative CT Image Quality Assessment and Protocol Optimization.
Proc SPIE Int Soc Opt Eng. 2021 Feb;11595. doi: 10.1117/12.2582123. Epub 2021 Feb 15.
2
Automated Web-based Software for CT Quality Control Testing of Low-contrast Detectability using Model Observers.
Proc SPIE Int Soc Opt Eng. 2024 Feb;12925. doi: 10.1117/12.3008777. Epub 2024 Apr 3.
4
CT image quality assessment by a Channelized Hotelling Observer (CHO): Application to protocol optimization.
Phys Med. 2016 Dec;32(12):1717-1723. doi: 10.1016/j.ejmp.2016.11.002. Epub 2016 Dec 10.
6
A convolutional neural network-based model observer for breast CT images.
Med Phys. 2020 Apr;47(4):1619-1632. doi: 10.1002/mp.14072. Epub 2020 Feb 29.
7
Use of a channelized Hotelling observer to assess CT image quality and optimize dose reduction for iteratively reconstructed images.
J Med Imaging (Bellingham). 2017 Jul;4(3):031213. doi: 10.1117/1.JMI.4.3.031213. Epub 2017 Oct 3.
8
Investigating the limited performance of a deep-learning-based SPECT denoising approach: An observer-study-based characterization.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12035. doi: 10.1117/12.2613134. Epub 2022 Apr 4.
10
Adaptive nonlocal means filtering based on local noise level for CT denoising.
Med Phys. 2014 Jan;41(1):011908. doi: 10.1118/1.4851635.

引用本文的文献

1
Patient-specific Channelized Hotelling observer to estimate lesion detectability in CT.
Proc SPIE Int Soc Opt Eng. 2025 Feb;13405. doi: 10.1117/12.3047381. Epub 2025 Apr 8.
2
First Clinical Photon-counting Detector CT System: Technical Evaluation.
Radiology. 2022 Apr;303(1):130-138. doi: 10.1148/radiol.212579. Epub 2021 Dec 14.

本文引用的文献

1
Synthesizing images from multiple kernels using a deep convolutional neural network.
Med Phys. 2020 Feb;47(2):422-430. doi: 10.1002/mp.13918. Epub 2019 Dec 29.
2
State of the Art in Abdominal CT: The Limits of Iterative Reconstruction Algorithms.
Radiology. 2019 Dec;293(3):491-503. doi: 10.1148/radiol.2019191422. Epub 2019 Oct 29.
5
Inter-laboratory comparison of channelized hotelling observer computation.
Med Phys. 2018 Jul;45(7):3019-3030. doi: 10.1002/mp.12940. Epub 2018 May 17.
6
Assessing computed tomography image quality for combined detection and estimation tasks.
J Med Imaging (Bellingham). 2017 Oct;4(4):045503. doi: 10.1117/1.JMI.4.4.045503. Epub 2017 Nov 21.
7
Use of a channelized Hotelling observer to assess CT image quality and optimize dose reduction for iteratively reconstructed images.
J Med Imaging (Bellingham). 2017 Jul;4(3):031213. doi: 10.1117/1.JMI.4.3.031213. Epub 2017 Oct 3.
10
Impact of number of repeated scans on model observer performance for a low-contrast detection task in computed tomography.
J Med Imaging (Bellingham). 2016 Apr;3(2):023504. doi: 10.1117/1.JMI.3.2.023504. Epub 2016 May 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验