Chen Lei, Shen Mao, Ren Shi-Bin, Chen Yu-Xiang, Li Wei, Han De-Man
School of Pharmaceutical Chemical and Materials Engineering, Taizhou University, Taizhou, 318000, P. R. China.
Nanoscale. 2021 May 27;13(20):9328-9338. doi: 10.1039/d1nr01736e.
Molybdenum disulfide (MoS2) has been regarded as a promising anode material in the field of sodium-ion batteries (SIBs), with the advantages of high theoretical capacity and large interlayer spacings. Unfortunately, its intrinsic poor electrical conductivity and large volume changes during the sodiation/desodiation reactions still limit its practical application. To deal with this shortcoming, we built MoS2 nanosheet/multiwalled carbon nanotube (denoted as MoS2-MSs/MWCNTs) composites with a three-dimensional (3D) micro-spherical structure, assembled in situ from MoS2 nanosheets. These nanosheets are connected to each other by the MWCNTs network, which provides a highly conductive pathway for electrons/ions through interparticle and intraparticle interfaces, accelerating charge transfer and ion diffusion capabilities. More importantly, the carbon network can boost electrical conductivity and relieve structural strain. Consequently, the as-prepared MoS2-MSs/MWCNTs composite presents a high reversible specific capacity of 519 mA h g-1 at 0.1 A g-1 after 100 cycles with a capacity retention of 94.4% and excellent rate performance (227 mA h g-1 at 10 A g-1). Outstanding cycling stability was also achieved (327.1 mA h g-1 over 1000 cycles at 2 A g-1) and was characterized by scanning electron microscopy (SEM) analysis. Our findings provide a simple and effective strategy to explore anode materials with advanced sodium storage properties.
二硫化钼(MoS₂)被认为是钠离子电池(SIBs)领域中一种很有前景的负极材料,具有高理论容量和较大层间距的优点。不幸的是,其固有的低电导率以及在 sodiation/desodiation 反应过程中的大体积变化仍然限制了其实际应用。为了解决这一缺点,我们构建了具有三维(3D)微球形结构的二硫化钼纳米片/多壁碳纳米管(记为 MoS₂-MSs/MWCNTs)复合材料,该复合材料由二硫化钼纳米片原位组装而成。这些纳米片通过 MWCNTs 网络相互连接,为电子/离子通过颗粒间和颗粒内界面提供了高导电通路,加速了电荷转移和离子扩散能力。更重要的是,碳网络可以提高电导率并缓解结构应变。因此,所制备的 MoS₂-MSs/MWCNTs 复合材料在 0.1 A g⁻¹ 下经过 100 次循环后呈现出 519 mA h g⁻¹ 的高可逆比容量,容量保持率为 94.4%,并且具有优异的倍率性能(在 10 A g⁻¹ 下为 227 mA h g⁻¹)。还实现了出色的循环稳定性(在 2 A g⁻¹ 下经过 1000 次循环后为 327.1 mA h g⁻¹),并通过扫描电子显微镜(SEM)分析进行了表征。我们的研究结果提供了一种简单有效的策略来探索具有先进储钠性能的负极材料。