Suppr超能文献

用于高性能钠离子电池的MoS/C分级管状异质结构的构建

Construction of MoS/C Hierarchical Tubular Heterostructures for High-Performance Sodium Ion Batteries.

作者信息

Pan Qichang, Zhang Qiaobao, Zheng Fenghua, Liu Yanzhen, Li Youpeng, Ou Xing, Xiong Xunhui, Yang Chenghao, Liu Meilin

机构信息

Guangzhou Key Laboratory of Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy , South China University of Technology , Guangzhou 510006 , China.

Department of Materials Science and Engineering, College of Materials , Xiamen University , Xiamen , Fujian 361005 , China.

出版信息

ACS Nano. 2018 Dec 26;12(12):12578-12586. doi: 10.1021/acsnano.8b07172. Epub 2018 Nov 27.

Abstract

Molybdenum disulfide (MoS) has been considered to be a promising anode material for sodium ion batteries (SIBs), because of its high capacity and graphene-like layered structure. However, irreversible conversion reaction during the sodiation/desodiation process is a major problem that must be overcome before its practical applications. In this work, MoS/amorphous carbon (C) microtubes (MTs) composed of heterostructured MoS/C nanosheets have been developed via a simple template method. The existence of MoS/C heterointerface plays a key role in achieving high and stable performance by stabilizing the reaction products Mo and sulfide phases, providing fast electronic and Na ions diffusion mobility, and alleviating the volume change. MoS/C MTs exhibit a high reversible specific capacity of 563.5 mA h g at 0.2 A g, good rate performance (520.5, 489.4, 452.9, 425.1, and 401.3 mA h g at 0.5, 1.0, 2.0, 5.0, and 10.0 A g, respectively), and excellent cycling stability (484.9 mA h g at 2.0 A g after 1500 cycles).

摘要

二硫化钼(MoS)因其高容量和类石墨烯层状结构,被认为是一种有前景的钠离子电池(SIBs)负极材料。然而,在嵌钠/脱钠过程中的不可逆转化反应是其实际应用前必须克服的主要问题。在这项工作中,通过一种简单的模板法制备了由异质结构的MoS/C纳米片组成的MoS/非晶碳(C)微管(MTs)。MoS/C异质界面的存在通过稳定反应产物Mo和硫化物相、提供快速的电子和钠离子扩散迁移率以及减轻体积变化,在实现高稳定性能方面起着关键作用。MoS/C MTs在0.2 A g时表现出563.5 mA h g的高可逆比容量,良好的倍率性能(在0.5、1.0、2.0、5.0和10.0 A g时分别为520.5、489.4、452.9、425.1和401.3 mA h g),以及优异的循环稳定性(在2.0 A g下循环1500次后为484.9 mA h g)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验