Pandey Saurabh, Mas Hector, Vasilakis Georgios, von Klitzing Wolf
Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece.
Department of Materials, Science and Technology, University of Crete, Heraklion 70013, Greece; Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
Phys Rev Lett. 2021 Apr 30;126(17):170402. doi: 10.1103/PhysRevLett.126.170402.
In this Letter, we demonstrate magnetogravitational matter-wave lensing as a novel tool in atom-optics in atomtronic waveguides. We collimate and focus matter waves originating from Bose-Einstein condensates and ultracold thermal atoms in ring-shaped time-averaged adiabatic potentials. We demonstrate "delta-kick cooling" of Bose-Einstein condensates, reducing their expansion energies by a factor of 46 down to 800 pK. The atomtronic waveguide ring has a diameter of less than one millimeter, compared to other state-of-the-art experiments requiring zero gravity or free-flight distances of ten meters and more. This level of control with extremely reduced spatial requirements is an important step toward atomtronic quantum sensors.
在本信函中,我们展示了磁引力物质波透镜效应,它是原子电子波导中原子光学的一种新型工具。我们在环形时间平均绝热势中准直并聚焦源自玻色 - 爱因斯坦凝聚体和超冷热原子的物质波。我们展示了玻色 - 爱因斯坦凝聚体的“δ - 踢冷却”,将其膨胀能量降低了46倍,降至800皮开尔文。与其他需要零重力或十米及以上自由飞行距离的先进实验相比,原子电子波导环的直径小于一毫米。这种在空间要求极低的情况下实现的控制水平是迈向原子电子量子传感器的重要一步。