Suppr超能文献

金属增材制造过程中的职业暴露:铝合金激光粉末床熔合的案例研究。

Occupational exposure during metal additive manufacturing: A case study of laser powder bed fusion of aluminum alloy.

机构信息

Ecole des Mines de Saint-Etienne, Loire, Saint-Etienne, France.

Institut National de Recherche et de Securite Centre de Lorraine - Process Engineering, Vandoeuvre Les Nancy, Lorraine, France.

出版信息

J Occup Environ Hyg. 2021 Jun;18(6):223-236. doi: 10.1080/15459624.2021.1909055. Epub 2021 May 14.

Abstract

Occupational exposure during metal additive manufacturing (Laser Powder Bed Fusion) using an aluminum alloy (AlSi10Mg) was assessed. Background aerosols before manufacturing, powder sieving, machine loading, manufacturing, machine unloading, powder unpacking, and machine cleaning were analyzed. Measurements were taken simultaneously at the source, in the near field, and on the operator during five manufacturing cycles. Aerosol measurement devices and physico-chemical techniques were used to determine the particle number or mass concentration (DiSCmini, core particle counter and sampling cassette), particle size distribution (NanoScan, optical particle detector and impactor), and the shape/size and chemical compositions of the inhalable particles (laser diffraction, inductively coupled plasma spectroscopy, scanning electron microscopy, energy dispersive X-ray microanalysis, and Brunauer-Emmett-Teller Method). The laser powder-bed fusion machine emitted in the additive manufacturing room an inhalable fraction of 2.37 ± 0.35 mg/m, with an aerosol number concentration ranging from 2 × 10 to 10 #/cm and a mass mean aerodynamic diameter of 318 nm. A relatively low concentration level was observed in the near field of the machine with an aerosol number concentration of ∼10 #/cm. A higher concentration level on the operator was attained during the unpacking and cleaning steps, showing an inhalable fraction of 1.73 ± 0.30 mg/m. Al and Mg nanoparticles were aerosolized at the source (inside the laser powder-bed fusion machine) with a particle size distribution of 153 nm for Al and 117 nm for Mg and an aerosol number concentration reaching ten times that of the background aerosol level. The number or mass concentration of particles in the room atmosphere was increased to double that of the background aerosol level at specific workstations during manufacturing. Metal additive manufacturing is a source of potential occupational exposure to airborne metal nanoparticles. Particle-counting instruments showed high numbers of nanoparticles and some important peaks of particles ranging from 10 nm to 10 µm or larger at specific work tasks in the Additive Manufacturing (AM) environment. A multimetric approach was used to characterize the particle emissions resulting from this type of additive manufacturing.

摘要

评估了在使用铝合金(AlSi10Mg)的金属增材制造(激光粉末床熔合)过程中的职业暴露。在制造前、粉末过筛、机器装料、制造、机器卸料、粉末解包和机器清洁过程中分析背景气溶胶。在五个制造周期中,同时在源、近场和操作员处进行气溶胶测量。气溶胶测量设备和物理化学技术用于确定粒子数或质量浓度(DiSCmini、核心粒子计数器和采样盒)、粒径分布(NanoScan、光学粒子探测器和冲击器)以及可吸入颗粒的形状/大小和化学成分(激光衍射、电感耦合等离子体光谱法、扫描电子显微镜、能量色散 X 射线微分析和 Brunauer-Emmett-Teller 方法)。激光粉末床熔合机器在增材制造室中排放 2.37±0.35mg/m 的可吸入颗粒,气溶胶数浓度范围为 2×10 至 10 #/cm,质量平均空气动力学直径为 318nm。在机器的近场中观察到相对较低的浓度水平,气溶胶数浓度约为 10 #/cm。在解包和清洁步骤中,操作员处的浓度水平较高,可吸入颗粒分数为 1.73±0.30mg/m。Al 和 Mg 纳米颗粒在源处(在激光粉末床熔合机器内部)气溶胶化,Al 的粒径分布为 153nm,Mg 的粒径分布为 117nm,气溶胶数浓度达到背景气溶胶水平的十倍。在制造过程中,特定工作站的房间大气中的颗粒数或质量浓度增加到背景气溶胶水平的两倍。金属增材制造是空气中金属纳米颗粒潜在职业暴露的来源。在增材制造(AM)环境中的特定工作任务中,粒子计数仪器显示出大量的纳米颗粒和一些重要的粒子峰,粒径范围从 10nm 到 10μm 或更大。采用多指标方法来描述这种类型的增材制造产生的颗粒排放。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验