Suppr超能文献

用于职业卫生的增材制造:工艺、排放与暴露的全面综述

Additive Manufacturing for Occupational Hygiene: A Comprehensive Review of Processes, Emissions, & Exposures.

作者信息

Stefaniak A B, Du Preez S, Du Plessis J L

机构信息

Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA.

North-West University, Occupational Hygiene and Health Research Initiative, Potchefstroom, South Africa.

出版信息

J Toxicol Environ Health B Crit Rev. 2021 Jun 17:1-50. doi: 10.1080/10937404.2021.1936319.

Abstract

This comprehensive review introduces occupational (industrial) hygienists and toxicologists to the seven basic additive manufacturing (AM) process categories. Forty-six articles were identified that reported real-world measurements for all AM processes, except sheet lamination. Particles released from powder bed fusion (PBF), material jetting (MJ), material extrusion (ME), and directed energy deposition (DED) processes exhibited nanoscale to submicron scale; real-time particle number (mobility sizers, condensation nuclei counters, miniDiSC, electrical diffusion batteries) and surface area monitors (diffusion chargers) were generally sufficient for these processes. Binder jetting (BJ) machines released particles up to 8.5 µm; optical particle sizers (number) and laser scattering photometers (mass) were sufficient for this process. PBF and DED processes (powdered metallic feedstocks) released particles that contained respiratory irritants (chromium, molybdenum), central nervous system toxicants (manganese), and carcinogens (nickel). All process categories, except those that use metallic feedstocks, released organic gases, including (but not limited to), respiratory irritants (toluene, xylenes), asthmagens (methyl methacrylate, styrene), and carcinogens (benzene, formaldehyde, acetaldehyde). Real-time photoionization detectors for total volatile organics provided useful information for processes that utilize polymer feedstock materials. More research is needed to understand 1) facility-, machine-, and feedstock-related factors that influence emissions and exposures, 2) dermal exposure and biological burden, and 3) task-based exposures. Harmonized emissions monitoring and exposure assessment approaches are needed to facilitate inter-comparison of study results. Improved understanding of AM process emissions and exposures is needed for hygienists to ensure appropriate health and safety conditions for workers and for toxicologists to design experimental protocols that accurately mimic real-world exposure conditions. ABS : acrylonitrile butadiene styrene; ACGIH® TLV® : American Conference of Governmental Industrial Hygienists Threshold Limit Value; ACH : air change per hour; AM : additive manufacturing; ASA : acrylonitrile styrene acrylate; AVP : acetone vapor polishing; BJ : binder jetting; CAM-LEM : computer-aided manufacturing of laminated engineering materials; CNF : carbon nanofiber; CNT : carbon nanotube; CP : co-polyester; CNC : condensation nuclei counter; CVP : chloroform vapor polishing; DED : directed energy deposition; DLP : digital light processing; EBM : electron beam melting; EELS : electron energy loss spectrometry; EDB : electrical diffusion batteries; EDX : energy dispersive x-ray analyzer; ER : emission rate; FDM™ : fused deposition modeling; FFF : fused filament fabrication; IAQ : indoor air quality; LSP : laser scattering photometer; LCD : liquid crystal display; LDSA : lung deposited particle surface area; LOD : limit of detection; LOM : laminated object manufacturing; LOQ : limit of quantitation; MCE : mixed cellulose ester filter; ME : material extrusion; MJ : material jetting; OEL : occupational exposure limit; OPS : optical particle sizer; PBF : powder bed fusion; PBZ : personal breathing zone; PC : polycarbonate; PEEK : poly ether ether ketone; PET : polyethylene terephthalate; PETG : Polyethylene terephthalate glycol; PID : photoionization detector; PLA : polylactic acid; PM : particulate matter with aerodynamic diameter less than 1 µm; PM : particulate matter with aerodynamic diameter less than 2.5 µm; PM : particulate matter with aerodynamic diameter less than 10 µm; PSL : plastic sheet lamination; PVA : polyvinyl alcohol; REL : recommended exposure limit; SDL : selective deposition lamination; SDS : safety data sheet; SEM : scanning electron microscopy; SL : sheet lamination; SLA : stereolithography; SLM : selective laser melting; SMPS : scanning mobility particle sizer; SVOC : semi-volatile organic compound; TEM : transmission electron microscopy; TGA : thermal gravimetric analysis; TPU : thermo polyurethane; UAM : ultrasonic additive manufacturing; UC : ultrasonic consolidation; TVOC : total volatile organic compounds; TWA : time-weighted average; VOC : volatile organic compound; VP : vat photopolymerization.

摘要

本全面综述向职业(工业)卫生学家和毒理学家介绍了七种基本的增材制造(AM)工艺类别。共识别出46篇文章,这些文章报道了除板材层压之外的所有增材制造工艺在实际环境中的测量结果。粉末床熔融(PBF)、材料喷射(MJ)、材料挤出(ME)和定向能量沉积(DED)工艺释放的颗粒呈现纳米级至亚微米级;实时颗粒数量监测仪(移动粒径分析仪、凝结核计数器、miniDiSC、电扩散电池)和表面积监测仪(扩散充电器)通常足以用于这些工艺。粘结剂喷射(BJ)机器释放的颗粒最大可达8.5微米;光学颗粒粒径分析仪(数量)和激光散射光度计(质量)足以用于此工艺。PBF和DED工艺(金属粉末原料)释放的颗粒含有呼吸道刺激物(铬、钼)、中枢神经系统毒物(锰)和致癌物(镍)。除使用金属原料的工艺类别外,所有工艺类别都会释放有机气体,包括(但不限于)呼吸道刺激物(甲苯、二甲苯)、致喘物(甲基丙烯酸甲酯、苯乙烯)和致癌物(苯、甲醛、乙醛)。用于测量总挥发性有机物的实时光离子化探测器可为使用聚合物原料的工艺提供有用信息。需要开展更多研究以了解:1)影响排放和暴露的设施、机器及原料相关因素;2)皮肤暴露和生物负荷;3)基于任务的暴露。需要统一的排放监测和暴露评估方法,以促进研究结果的相互比较。卫生学家需要更好地了解增材制造工艺的排放和暴露情况,以确保为工人提供适当的健康和安全条件;毒理学家需要更好地了解这些情况,以便设计出能准确模拟实际暴露条件的实验方案。ABS:丙烯腈丁二烯苯乙烯;ACGIH® TLV®:美国政府工业卫生学家会议阈限值;ACH:每小时换气次数;AM:增材制造;ASA:丙烯腈苯乙烯丙烯酸酯;AVP:丙酮蒸汽抛光;BJ:粘结剂喷射;CAM-LEM:层压工程材料的计算机辅助制造;CNF:碳纳米纤维;CNT:碳纳米管;CP:共聚酯;CNC:凝结核计数器;CVP:氯仿蒸汽抛光;DED:定向能量沉积;DLP:数字光处理;EBM:电子束熔炼;EELS:电子能量损失谱;EDB:电扩散电池;EDX:能量色散X射线分析仪;ER:排放速率;FDM™: 熔融沉积成型;FFF:熔丝制造;IAQ:室内空气质量;LSP:激光散射光度计;LCD:液晶显示器;LDSA:肺沉积颗粒表面积;LOD:检测限;LOM:分层实体制造;LOQ:定量限;MCE:混合纤维素酯过滤器;ME:材料挤出;MJ:材料喷射;OEL:职业接触限值;OPS:光学颗粒粒径分析仪;PBF:粉末床熔融;PBZ:个人呼吸带;PC:聚碳酸酯;PEEK:聚醚醚酮;PET:聚对苯二甲酸乙二酯;PETG:聚对苯二甲酸乙二酯二醇;PID:光离子化探测器;PLA:聚乳酸;PM:空气动力学直径小于1微米的颗粒物;PM:空气动力学直径小于2.5微米的颗粒物;PM:空气动力学直径小于10微米的颗粒物;PSL:塑料板材层压;PVA:聚乙烯醇;REL:推荐暴露限值;SDL:选择性沉积层压;SDS:安全数据表;SEM:扫描电子显微镜;SL:板材层压;SLA:立体光刻;SLM:选择性激光熔融;SMPS:扫描迁移率颗粒粒径分析仪;SVOC:半挥发性有机化合物;TEM:透射电子显微镜;TGA:热重分析;TPU:热塑性聚氨酯;UAM:超声增材制造;UC:超声固结;TVOC:总挥发性有机化合物;TWA:时间加权平均值;VOC:挥发性有机化合物;VP:光固化成型

相似文献

1
Additive Manufacturing for Occupational Hygiene: A Comprehensive Review of Processes, Emissions, & Exposures.
J Toxicol Environ Health B Crit Rev. 2021 Jun 17:1-50. doi: 10.1080/10937404.2021.1936319.
3
Insights Into Emissions and Exposures From Use of Industrial-Scale Additive Manufacturing Machines.
Saf Health Work. 2019 Jun;10(2):229-236. doi: 10.1016/j.shaw.2018.10.003. Epub 2018 Nov 9.
6
Emissions associated with operations of four different additive manufacturing or 3D printing technologies.
J Occup Environ Hyg. 2020 Oct;17(10):464-479. doi: 10.1080/15459624.2020.1798012. Epub 2020 Aug 18.
10
Particle and vapor emissions from vat polymerization desktop-scale 3-dimensional printers.
J Occup Environ Hyg. 2019 Aug;16(8):519-531. doi: 10.1080/15459624.2019.1612068. Epub 2019 May 16.

引用本文的文献

1
Regression tools for chemical release modeling: An additive manufacturing case study.
J Occup Environ Hyg. 2025 May;22(5):375-385. doi: 10.1080/15459624.2024.2447320. Epub 2025 Jan 13.
3
Pulmonary evaluation of whole-body inhalation exposure of polycarbonate (PC) filament 3D printer emissions in rats.
J Toxicol Environ Health A. 2024 Apr 17;87(8):325-341. doi: 10.1080/15287394.2024.2311170. Epub 2024 Feb 6.
4
Occupational exposure and health surveys at metal additive manufacturing facilities.
Front Public Health. 2023 Nov 20;11:1292420. doi: 10.3389/fpubh.2023.1292420. eCollection 2023.
7
Emissions and Exposures Associated with the Use of an Inconel Powder during Directed Energy Deposition Additive Manufacturing.
Int J Environ Res Public Health. 2023 Jun 22;20(13):6206. doi: 10.3390/ijerph20136206.
8
An explorative study on respiratory health among operators working in polymer additive manufacturing.
Front Public Health. 2023 Apr 17;11:1148974. doi: 10.3389/fpubh.2023.1148974. eCollection 2023.
9
Workplace Exposure Measurements of Emission from Industrial 3D Printing.
Ann Work Expo Health. 2023 Jun 6;67(5):596-608. doi: 10.1093/annweh/wxad006.

本文引用的文献

1
Characteristics of nanoparticle formation and hazardous air pollutants emitted by 3D printer operations: from emission to inhalation.
RSC Adv. 2019 Jun 24;9(34):19606-19612. doi: 10.1039/c9ra03248g. eCollection 2019 Jun 19.
3
Three-Dimensional (3D) Printing: Implications for Risk Assessment and Management in Occupational Settings.
Ann Work Expo Health. 2021 Jul 3;65(6):617-634. doi: 10.1093/annweh/wxaa146.
4
Characterization of Ultrafine Particles and VOCs Emitted from a 3D Printer.
Int J Environ Res Public Health. 2021 Jan 21;18(3):929. doi: 10.3390/ijerph18030929.
5
Paper-based optoelectronic nose for identification of indoor air pollution caused by 3D printing thermoplastic filaments.
Anal Chim Acta. 2021 Jan 25;1143:1-8. doi: 10.1016/j.aca.2020.11.012. Epub 2020 Nov 13.
6
Nanoparticle Exposure and Workplace Measurements During Processes Related to 3D Printing of a Metal Object.
Front Public Health. 2020 Nov 25;8:608718. doi: 10.3389/fpubh.2020.608718. eCollection 2020.
7
Dynamic Analysis of Particle Emissions from FDM 3D Printers through a Comparative Study of Chamber and Flow Tunnel Measurements.
Environ Sci Technol. 2020 Nov 17;54(22):14568-14577. doi: 10.1021/acs.est.0c05309. Epub 2020 Nov 2.
8
Emissions associated with operations of four different additive manufacturing or 3D printing technologies.
J Occup Environ Hyg. 2020 Oct;17(10):464-479. doi: 10.1080/15459624.2020.1798012. Epub 2020 Aug 18.
9
Exposure, assessment and health hazards of particulate matter in metal additive manufacturing: A review.
Chemosphere. 2020 Nov;259:127452. doi: 10.1016/j.chemosphere.2020.127452. Epub 2020 Jun 20.
10
Emissions and health risks from the use of 3D printers in an occupational setting.
J Toxicol Environ Health A. 2020 Apr 2;83(7):279-287. doi: 10.1080/15287394.2020.1751758. Epub 2020 Apr 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验