Suppr超能文献

酶促组蛋白 N-甲基精氨酸去甲基化的催化机制是什么,外加电场会对其产生影响吗?

What Is the Catalytic Mechanism of Enzymatic Histone N-Methyl Arginine Demethylation and Can It Be Influenced by an External Electric Field?

机构信息

Department of Chemistry, Michigan Technological University, Houghton, Michigan, 49931, USA.

Present address: Department of Chemistry, National Institute of Technology, Rourkela, Odisha, 769001, India.

出版信息

Chemistry. 2021 Aug 16;27(46):11827-11836. doi: 10.1002/chem.202101174. Epub 2021 Jun 4.

Abstract

Arginine methylation is an important mechanism of epigenetic regulation. Some Fe(II) and 2-oxoglutarate dependent Jumonji-C (JmjC) Nϵ-methyl lysine histone demethylases also have N-methyl arginine demethylase activity. We report combined molecular dynamic (MD) and Quantum Mechanical/Molecular Mechanical (QM/MM) studies on the mechanism of N-methyl arginine demethylation by human KDM4E and compare the results with those reported for N-methyl lysine demethylation by KDM4A. At the KDM4E active site, Glu191, Asn291, and Ser197 form a conserved scaffold that restricts substrate dynamics; substrate binding is also mediated by an out of active site hydrogen-bond between the substrate Ser1 and Tyr178. The calculations imply that in either C-H or N-H potential bond cleaving pathways for hydrogen atom transfer (HAT) during N-methyl arginine demethylation, electron transfer occurs via a σ-channel; the transition state for the N-H pathway is ∼10 kcal/mol higher than for the C-H pathway due to the higher bond dissociation energy of the N-H bond. The results of applying external electric fields (EEFs) reveal EEFs with positive field strengths parallel to the Fe=O bond have a significant barrier-lowering effect on the C-H pathway, by contrast, such EEFs inhibit the N-H activation rate. The overall results imply that KDM4 catalyzed N-methyl arginine demethylation and N-methyl lysine demethylation occur via similar C-H abstraction and rebound mechanisms leading to methyl group hydroxylation, though there are differences in the interactions leading to productive binding of intermediates.

摘要

精氨酸甲基化是表观遗传调控的重要机制。一些依赖 Fe(II)和 2-氧代戊二酸的 Jumonji-C(JmjC)Nϵ-甲基赖氨酸组蛋白去甲基酶也具有 N-甲基精氨酸去甲基酶活性。我们报告了人类 KDM4E 进行 N-甲基精氨酸去甲基化的分子动力学(MD)和量子力学/分子力学(QM/MM)联合研究,并将结果与 KDM4A 进行 N-甲基赖氨酸去甲基化的报道结果进行了比较。在 KDM4E 的活性部位,Glu191、Asn291 和 Ser197 形成了一个保守的支架,限制了底物的动力学;底物的结合也通过底物 Ser1 和 Tyr178 之间的活性位点外氢键来介导。计算表明,在 N-甲基精氨酸去甲基化过程中进行 HAT 的 C-H 或 N-H 潜在键断裂途径中,电子转移通过σ通道发生;由于 N-H 键的键离解能较高,N-H 途径的过渡态比 C-H 途径高约 10 kcal/mol。施加外部电场(EEFs)的结果表明,与 Fe=O 键平行的正场强的 EEFs 对 C-H 途径具有显著的降低势垒作用,相比之下,这种 EEFs 会抑制 N-H 活化速率。总的结果表明,KDM4 催化的 N-甲基精氨酸去甲基化和 N-甲基赖氨酸去甲基化通过类似的 C-H 抽取和回弹机制发生,导致甲基基团羟化,尽管在导致中间体有效结合的相互作用方面存在差异。

相似文献

引用本文的文献

2
Revealing the Catalytic Strategy of FTO.揭示FTO的催化策略。
Chem Catal. 2023 Sep 21;3(9). doi: 10.1016/j.checat.2023.100732. Epub 2023 Aug 28.

本文引用的文献

10
Structure-function relationships in KDM7 histone demethylases.KDM7 组蛋白去甲基酶的结构-功能关系。
Adv Protein Chem Struct Biol. 2019;117:113-125. doi: 10.1016/bs.apcsb.2019.08.005. Epub 2019 Sep 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验