Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA.
Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA; CAPES Foundation, Ministry of Education of Brazil, Brasília 70040-020, Brazil.
Curr Biol. 2021 Jul 12;31(13):2831-2843.e6. doi: 10.1016/j.cub.2021.04.039. Epub 2021 May 13.
In vertebrates, advanced cognitive abilities are typically associated with the telencephalic pallium. In mammals, the pallium is a layered mixture of excitatory and inhibitory neuronal populations with distinct molecular, physiological, and network phenotypes. This cortical architecture is proposed to support efficient, high-level information processing. Comparative perspectives across vertebrates provide a lens to understand the common features of pallium that are important for advanced cognition. Studies in songbirds have established strikingly parallel features of neuronal types between mammalian and avian pallium. However, lack of genetic access to defined pallial cell types in non-mammalian vertebrates has hindered progress in resolving connections between molecular and physiological phenotypes. A definitive mapping of the physiology of pallial cells onto their molecular identities in birds is critical for understanding how synaptic and computational properties depend on underlying molecular phenotypes. Using viral tools to target excitatory versus inhibitory neurons in the zebra finch auditory association pallium (calmodulin-dependent kinase alpha [CaMKIIα] and glutamate decarboxylase 1 [GAD1] promoters, respectively), we systematically tested predictions derived from mammalian pallium. We identified two genetically distinct neuronal populations that exhibit profound physiological and computational similarities with mammalian excitatory and inhibitory pallial cells, definitively aligning putative cell types in avian caudal nidopallium with these molecular identities. Specifically, genetically identified CaMKIIα and GAD1 cell types in avian auditory association pallium exhibit distinct intrinsic physiological parameters, distinct auditory coding principles, and inhibitory-dependent pallial synchrony, gamma oscillations, and local suppression. The retention, or convergence, of these molecular and physiological features in both birds and mammals clarifies the characteristics of pallial circuits for advanced cognitive abilities.
在脊椎动物中,高级认知能力通常与端脑皮层有关。在哺乳动物中,皮层是兴奋性和抑制性神经元群体的分层混合物,具有独特的分子、生理和网络表型。这种皮质结构被认为支持高效、高级别的信息处理。跨脊椎动物的比较视角为理解对高级认知很重要的皮层的共同特征提供了一个视角。鸣禽的研究确立了哺乳动物和鸟类皮层之间神经元类型的惊人相似特征。然而,缺乏对非哺乳动物脊椎动物中定义明确的皮层细胞类型的遗传访问,阻碍了在确定分子和生理表型之间的联系方面取得进展。在鸟类中,将皮层细胞的生理学精确映射到其分子特征上,对于理解突触和计算特性如何依赖于潜在的分子表型至关重要。使用病毒工具靶向斑马雀听觉联合皮层中的兴奋性神经元与抑制性神经元(分别为钙调蛋白依赖性激酶α[CaMKIIα]和谷氨酸脱羧酶 1[GAD1]启动子),我们系统地测试了源自哺乳动物皮层的预测。我们确定了两种具有深远生理和计算相似性的遗传上不同的神经元群体,与哺乳动物兴奋性和抑制性皮层细胞明确一致,将禽类尾状核中的假定细胞类型与这些分子特征明确一致。具体来说,在鸟类听觉联合皮层中,遗传鉴定的 CaMKIIα 和 GAD1 细胞类型表现出明显的内在生理参数、不同的听觉编码原则以及抑制性依赖的皮层同步、γ 振荡和局部抑制。这些分子和生理特征在鸟类和哺乳动物中的保留或收敛阐明了高级认知能力的皮层回路的特征。