Suppr超能文献

检索约束估值:迈向开放式决策预测。

Retrieval-constrained valuation: Toward prediction of open-ended decisions.

机构信息

Haas School of Business, University of California, Berkeley, CA 94720;

Social Science Matrix, University of California, Berkeley, CA 94720.

出版信息

Proc Natl Acad Sci U S A. 2021 May 18;118(20). doi: 10.1073/pnas.2022685118.

Abstract

Real-world decisions are often open ended, with goals, choice options, or evaluation criteria conceived by decision-makers themselves. Critically, the quality of decisions may heavily rely on the generation of options, as failure to generate promising options limits, or even eliminates, the opportunity for choosing them. This core aspect of problem structuring, however, is largely absent from classical models of decision-making, thereby restricting their predictive scope. Here, we take a step toward addressing this issue by developing a neurally inspired cognitive model of a class of ill-structured decisions in which choice options must be self-generated. Specifically, using a model in which semantic memory retrieval is assumed to constrain the set of options available during valuation, we generate highly accurate out-of-sample predictions of choices across multiple categories of goods. Our model significantly and substantially outperforms models that only account for valuation or retrieval in isolation or those that make alternative mechanistic assumptions regarding their interaction. Furthermore, using neuroimaging, we confirm our core assumption regarding the engagement of, and interaction between, semantic memory retrieval and valuation processes. Together, these results provide a neurally grounded and mechanistic account of decisions with self-generated options, representing a step toward unraveling cognitive mechanisms underlying adaptive decision-making in the real world.

摘要

现实世界中的决策通常是开放式的,其目标、选择选项或评估标准由决策者自己构思。至关重要的是,决策的质量可能严重依赖于选项的生成,如果未能生成有希望的选项,那么选择它们的机会就会受到限制,甚至被消除。然而,这一问题结构的核心方面在经典决策模型中基本缺失,从而限制了它们的预测范围。在这里,我们通过开发一个受神经启发的认知模型来解决这个问题,该模型针对的是一类必须自行生成选择选项的非结构化决策。具体来说,我们使用了一个模型,该模型假设语义记忆检索可以限制在估值过程中可用的选项集,从而对多个类别的商品的选择进行了高度准确的样本外预测。我们的模型在单独考虑估值或检索的模型、或那些对其相互作用做出替代机械假设的模型方面具有显著和实质性的优势。此外,我们使用神经影像学技术,证实了我们关于语义记忆检索和估值过程的参与和相互作用的核心假设。这些结果共同提供了一个具有自我生成选项的决策的神经基础和机械解释,代表着朝着解开现实世界中自适应决策背后的认知机制迈出了一步。

相似文献

4
The Neural Basis of Aversive Pavlovian Guidance during Planning.规划过程中厌恶性巴甫洛夫引导的神经基础。
J Neurosci. 2017 Oct 18;37(42):10215-10229. doi: 10.1523/JNEUROSCI.0085-17.2017. Epub 2017 Sep 18.
7
Imaging valuation models in human choice.人类选择中的成像评估模型。
Annu Rev Neurosci. 2006;29:417-48. doi: 10.1146/annurev.neuro.29.051605.112903.
8
Hard Decisions Shape the Neural Coding of Preferences.艰难的决策塑造偏好的神经编码。
J Neurosci. 2019 Jan 23;39(4):718-726. doi: 10.1523/JNEUROSCI.1681-18.2018. Epub 2018 Dec 10.
10

引用本文的文献

4
A Theory of Mental Frameworks.一种心理框架理论。
Front Psychol. 2023 Jul 20;14:1220664. doi: 10.3389/fpsyg.2023.1220664. eCollection 2023.
5
Cognitive and neural principles of a memory bias on preferential choices.偏好选择中记忆偏差的认知和神经原理。
Curr Res Neurobiol. 2022 Feb 8;3:100029. doi: 10.1016/j.crneur.2022.100029. eCollection 2022.

本文引用的文献

3
How We Know What Not To Think.我们如何知道不该想什么。
Trends Cogn Sci. 2019 Dec;23(12):1026-1040. doi: 10.1016/j.tics.2019.09.007. Epub 2019 Oct 31.
4
Estimating semantic networks of groups and individuals from fluency data.从流畅性数据估计群体和个体的语义网络。
Comput Brain Behav. 2018 Mar;1(1):36-58. doi: 10.1007/s42113-018-0003-7. Epub 2018 Jun 6.
5
Semantic processes in preferential decision making.偏好决策中的语义过程。
J Exp Psychol Learn Mem Cogn. 2019 Apr;45(4):627-640. doi: 10.1037/xlm0000618. Epub 2018 Jul 19.
8
Toward a Rational and Mechanistic Account of Mental Effort.迈向对心理努力的理性与机械论解释
Annu Rev Neurosci. 2017 Jul 25;40:99-124. doi: 10.1146/annurev-neuro-072116-031526. Epub 2017 Mar 31.
10
The neural and computational bases of semantic cognition.语义认知的神经和计算基础。
Nat Rev Neurosci. 2017 Jan;18(1):42-55. doi: 10.1038/nrn.2016.150. Epub 2016 Nov 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验