Suppr超能文献

从流畅性数据估计群体和个体的语义网络。

Estimating semantic networks of groups and individuals from fluency data.

作者信息

Zemla Jeffrey C, Austerweil Joseph L

机构信息

Department of Psychology, University of Wisconsin-Madison, 1202 West Johnson Street, Madison, WI 53706.

出版信息

Comput Brain Behav. 2018 Mar;1(1):36-58. doi: 10.1007/s42113-018-0003-7. Epub 2018 Jun 6.

Abstract

One popular and classic theory of how the mind encodes knowledge is an associative semantic network, where concepts and associations between concepts correspond to nodes and edges, respectively. A major issue in semantic network research is that there is no consensus among researchers as to the best method for estimating the network of an individual or group. We propose a novel method (U-INVITE) for estimating semantic networks from semantic fluency data (listing items from a category) based on a censored random walk model of memory retrieval. We compare this method to several other methods in the literature for estimating networks from semantic fluency data. In simulations, we find that U-INVITE can recover semantic networks with low error rates given only a moderate amount of data. U-INVITE is the only known method derived from a psychologically plausible process model of memory retrieval and one of two known methods that we found to be consistent estimators of this process: if semantic memory retrieval is consistent with this process, the procedure will eventually estimate the true network (given enough data). We conduct the first exploration of different methods for estimating psychologically-valid semantic networks by comparing people's similarity judgments of edges estimated by each network estimation method. To encourage best practices, we discuss the merits of each network estimation technique, provide a flow chart that assists with choosing an appropriate method, and supply code for others to employ these techniques on their own data.

摘要

关于大脑如何编码知识,一种流行且经典的理论是关联语义网络,其中概念以及概念之间的关联分别对应于节点和边。语义网络研究中的一个主要问题是,研究人员对于估计个体或群体网络的最佳方法尚未达成共识。我们提出了一种新方法(U-INVITE),用于基于记忆检索的删失随机游走模型,从语义流畅性数据(列出某一类别中的项目)中估计语义网络。我们将此方法与文献中其他几种从语义流畅性数据估计网络的方法进行比较。在模拟中,我们发现仅需适度数量的数据,U-INVITE就能以低错误率恢复语义网络。U-INVITE是唯一一种源自记忆检索心理合理过程模型的已知方法,也是我们发现的两种已知的该过程一致估计方法之一:如果语义记忆检索与该过程一致,该程序最终将估计出真实网络(给定足够的数据)。我们通过比较人们对每种网络估计方法所估计边的相似性判断,首次探索了估计心理有效语义网络的不同方法。为鼓励最佳实践,我们讨论了每种网络估计技术的优点,提供了一个有助于选择合适方法的流程图,并提供了代码,供其他人在自己的数据上应用这些技术。

相似文献

1
Estimating semantic networks of groups and individuals from fluency data.
Comput Brain Behav. 2018 Mar;1(1):36-58. doi: 10.1007/s42113-018-0003-7. Epub 2018 Jun 6.
2
SNAFU: The Semantic Network and Fluency Utility.
Behav Res Methods. 2020 Aug;52(4):1681-1699. doi: 10.3758/s13428-019-01343-w.
5
Knowledge Representations Derived From Semantic Fluency Data.
Front Psychol. 2022 Mar 11;13:815860. doi: 10.3389/fpsyg.2022.815860. eCollection 2022.
6
Investigating the network structure of domain-specific knowledge using the semantic fluency task.
Mem Cognit. 2023 Apr;51(3):623-646. doi: 10.3758/s13421-022-01314-1. Epub 2022 May 24.
7
A Critical Review of Network-Based and Distributional Approaches to Semantic Memory Structure and Processes.
Top Cogn Sci. 2022 Jan;14(1):54-77. doi: 10.1111/tops.12548. Epub 2021 Jun 6.
8
Mapping the Memory Structure of High-Knowledge Students: A Longitudinal Semantic Network Analysis.
J Intell. 2024 May 31;12(6):56. doi: 10.3390/jintelligence12060056.
10
Foraging in Semantic Fields: How We Search Through Memory.
Top Cogn Sci. 2015 Jul;7(3):513-34. doi: 10.1111/tops.12151. Epub 2015 Jun 22.

引用本文的文献

1
Measuring individual semantic networks: A simulation study.
PLoS One. 2025 Aug 11;20(8):e0328712. doi: 10.1371/journal.pone.0328712. eCollection 2025.
2
Emotion word production tasks grant insight into the development of emotion word organization and accessibility.
Emotion. 2025 Aug;25(5):1137-1150. doi: 10.1037/emo0001491. Epub 2025 Jan 16.
3
Leveraging relatedness-based measures in people with language disorders: A scoping review.
J Neuropsychol. 2025 Jun;19(2):299-337. doi: 10.1111/jnp.12405. Epub 2024 Dec 16.
4
Sparking creativity: Encouraging creative idea generation through automatically generated word recommendations.
Behav Res Methods. 2024 Oct;56(7):7939-7962. doi: 10.3758/s13428-024-02463-8. Epub 2024 Jul 16.
5
Mapping the Memory Structure of High-Knowledge Students: A Longitudinal Semantic Network Analysis.
J Intell. 2024 May 31;12(6):56. doi: 10.3390/jintelligence12060056.
6
Navigating the Mental Lexicon: Network Structures, Lexical Search and Lexical Retrieval.
J Psycholinguist Res. 2024 Mar 1;53(2):21. doi: 10.1007/s10936-024-10059-8.
7
Evidence for optimal semantic search throughout adulthood.
Sci Rep. 2023 Dec 18;13(1):22528. doi: 10.1038/s41598-023-49858-9.
8
Age differences in semantic network structure: Acquiring knowledge shapes semantic memory.
Psychol Aging. 2023 Mar;38(2):87-102. doi: 10.1037/pag0000721. Epub 2023 Jan 23.
9
Structural differences in the semantic networks of younger and older adults.
Sci Rep. 2022 Dec 12;12(1):21459. doi: 10.1038/s41598-022-11698-4.
10
Highly scalable maximum likelihood and conjugate Bayesian inference for ERGMs on graph sets with equivalent vertices.
PLoS One. 2022 Aug 26;17(8):e0273039. doi: 10.1371/journal.pone.0273039. eCollection 2022.

本文引用的文献

2
Brain and Social Networks: Fundamental Building Blocks of Human Experience.
Trends Cogn Sci. 2017 Sep;21(9):674-690. doi: 10.1016/j.tics.2017.06.009. Epub 2017 Jul 20.
3
4
When pumpkin is closer to onion than to squash: The structure of the second language lexicon.
Cognition. 2016 Nov;156:60-70. doi: 10.1016/j.cognition.2016.07.014. Epub 2016 Aug 8.
5
Standardization, Clinical Validation, and Typicality Norms of a New Test Assessing Semantic Verbal Fluency.
Arch Clin Neuropsychol. 2016 Aug;31(5):434-45. doi: 10.1093/arclin/acw034. Epub 2016 Jun 26.
6
New methods, measures, and models for analyzing memory impairment using triadic comparisons.
Behav Res Methods. 2016 Dec;48(4):1492-1507. doi: 10.3758/s13428-015-0662-4.
8
Random walks on semantic networks can resemble optimal foraging.
Psychol Rev. 2015 Jul;122(3):558-69. doi: 10.1037/a0038693. Epub 2015 Feb 2.
9
Investigating the structure of semantic networks in low and high creative persons.
Front Hum Neurosci. 2014 Jun 10;8:407. doi: 10.3389/fnhum.2014.00407. eCollection 2014.
10
Semantic organization in children with cochlear implants: computational analysis of verbal fluency.
Front Psychol. 2013 Sep 2;4:543. doi: 10.3389/fpsyg.2013.00543. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验