Zemla Jeffrey C, Austerweil Joseph L
Department of Psychology, University of Wisconsin-Madison, 1202 West Johnson Street, Madison, WI 53706.
Comput Brain Behav. 2018 Mar;1(1):36-58. doi: 10.1007/s42113-018-0003-7. Epub 2018 Jun 6.
One popular and classic theory of how the mind encodes knowledge is an associative semantic network, where concepts and associations between concepts correspond to nodes and edges, respectively. A major issue in semantic network research is that there is no consensus among researchers as to the best method for estimating the network of an individual or group. We propose a novel method (U-INVITE) for estimating semantic networks from semantic fluency data (listing items from a category) based on a censored random walk model of memory retrieval. We compare this method to several other methods in the literature for estimating networks from semantic fluency data. In simulations, we find that U-INVITE can recover semantic networks with low error rates given only a moderate amount of data. U-INVITE is the only known method derived from a psychologically plausible process model of memory retrieval and one of two known methods that we found to be consistent estimators of this process: if semantic memory retrieval is consistent with this process, the procedure will eventually estimate the true network (given enough data). We conduct the first exploration of different methods for estimating psychologically-valid semantic networks by comparing people's similarity judgments of edges estimated by each network estimation method. To encourage best practices, we discuss the merits of each network estimation technique, provide a flow chart that assists with choosing an appropriate method, and supply code for others to employ these techniques on their own data.
关于大脑如何编码知识,一种流行且经典的理论是关联语义网络,其中概念以及概念之间的关联分别对应于节点和边。语义网络研究中的一个主要问题是,研究人员对于估计个体或群体网络的最佳方法尚未达成共识。我们提出了一种新方法(U-INVITE),用于基于记忆检索的删失随机游走模型,从语义流畅性数据(列出某一类别中的项目)中估计语义网络。我们将此方法与文献中其他几种从语义流畅性数据估计网络的方法进行比较。在模拟中,我们发现仅需适度数量的数据,U-INVITE就能以低错误率恢复语义网络。U-INVITE是唯一一种源自记忆检索心理合理过程模型的已知方法,也是我们发现的两种已知的该过程一致估计方法之一:如果语义记忆检索与该过程一致,该程序最终将估计出真实网络(给定足够的数据)。我们通过比较人们对每种网络估计方法所估计边的相似性判断,首次探索了估计心理有效语义网络的不同方法。为鼓励最佳实践,我们讨论了每种网络估计技术的优点,提供了一个有助于选择合适方法的流程图,并提供了代码,供其他人在自己的数据上应用这些技术。