Suppr超能文献

单细胞数据中细胞身份的分层递进学习。

Hierarchical progressive learning of cell identities in single-cell data.

机构信息

Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.

Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands.

出版信息

Nat Commun. 2021 May 14;12(1):2799. doi: 10.1038/s41467-021-23196-8.

Abstract

Supervised methods are increasingly used to identify cell populations in single-cell data. Yet, current methods are limited in their ability to learn from multiple datasets simultaneously, are hampered by the annotation of datasets at different resolutions, and do not preserve annotations when retrained on new datasets. The latter point is especially important as researchers cannot rely on downstream analysis performed using earlier versions of the dataset. Here, we present scHPL, a hierarchical progressive learning method which allows continuous learning from single-cell data by leveraging the different resolutions of annotations across multiple datasets to learn and continuously update a classification tree. We evaluate the classification and tree learning performance using simulated as well as real datasets and show that scHPL can successfully learn known cellular hierarchies from multiple datasets while preserving the original annotations. scHPL is available at https://github.com/lcmmichielsen/scHPL .

摘要

监督方法越来越多地被用于识别单细胞数据中的细胞群体。然而,当前的方法在同时从多个数据集学习的能力上存在局限性,受到数据集在不同分辨率下注释的阻碍,并且在对新数据集进行重新训练时不会保留注释。后一点尤为重要,因为研究人员不能依赖使用数据集早期版本进行的下游分析。在这里,我们提出了 scHPL,这是一种层次渐进学习方法,它通过利用多个数据集的注释的不同分辨率,允许从单细胞数据中进行连续学习,从而学习和不断更新分类树。我们使用模拟和真实数据集评估分类和树学习性能,并表明 scHPL 可以成功地从多个数据集学习已知的细胞层次结构,同时保留原始注释。scHPL 可在 https://github.com/lcmmichielsen/scHPL 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23ec/8121839/c0edae1aedea/41467_2021_23196_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验