文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

弱监督和强监督学习的结合提高了 Gleason 模式分类中的强监督。

Combining weakly and strongly supervised learning improves strong supervision in Gleason pattern classification.

机构信息

HES-SO Valais, Technopôle 3, 3960, Sierre, Switzerland.

Computer Science Centre (CUI), University of Geneva, Route de Drize 7, Battelle A, Carouge, Switzerland.

出版信息

BMC Med Imaging. 2021 May 8;21(1):77. doi: 10.1186/s12880-021-00609-0.


DOI:10.1186/s12880-021-00609-0
PMID:33964886
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8105943/
Abstract

BACKGROUND: One challenge to train deep convolutional neural network (CNNs) models with whole slide images (WSIs) is providing the required large number of costly, manually annotated image regions. Strategies to alleviate the scarcity of annotated data include: using transfer learning, data augmentation and training the models with less expensive image-level annotations (weakly-supervised learning). However, it is not clear how to combine the use of transfer learning in a CNN model when different data sources are available for training or how to leverage from the combination of large amounts of weakly annotated images with a set of local region annotations. This paper aims to evaluate CNN training strategies based on transfer learning to leverage the combination of weak and strong annotations in heterogeneous data sources. The trade-off between classification performance and annotation effort is explored by evaluating a CNN that learns from strong labels (region annotations) and is later fine-tuned on a dataset with less expensive weak (image-level) labels. RESULTS: As expected, the model performance on strongly annotated data steadily increases as the percentage of strong annotations that are used increases, reaching a performance comparable to pathologists ([Formula: see text]). Nevertheless, the performance sharply decreases when applied for the WSI classification scenario with [Formula: see text]. Moreover, it only provides a lower performance regardless of the number of annotations used. The model performance increases when fine-tuning the model for the task of Gleason scoring with the weak WSI labels [Formula: see text]. CONCLUSION: Combining weak and strong supervision improves strong supervision in classification of Gleason patterns using tissue microarrays (TMA) and WSI regions. Our results contribute very good strategies for training CNN models combining few annotated data and heterogeneous data sources. The performance increases in the controlled TMA scenario with the number of annotations used to train the model. Nevertheless, the performance is hindered when the trained TMA model is applied directly to the more challenging WSI classification problem. This demonstrates that a good pre-trained model for prostate cancer TMA image classification may lead to the best downstream model if fine-tuned on the WSI target dataset. We have made available the source code repository for reproducing the experiments in the paper: https://github.com/ilmaro8/Digital_Pathology_Transfer_Learning.

摘要

背景:使用全切片图像 (WSI) 训练深度卷积神经网络 (CNN) 模型的一个挑战是提供所需的大量昂贵的、手动标注的图像区域。缓解注释数据稀缺的策略包括:使用迁移学习、数据增强和使用成本较低的图像级注释进行训练(弱监督学习)。然而,目前尚不清楚如何在存在不同训练数据源的情况下,在 CNN 模型中结合使用迁移学习,也不清楚如何利用大量弱标注图像与一组局部区域标注相结合。本文旨在评估基于迁移学习的 CNN 训练策略,以利用异构数据源中弱标注和强标注的组合。通过评估从强标注(区域标注)学习的 CNN,并在具有成本较低的弱标注(图像级)数据集上进行微调,探索分类性能和标注工作之间的权衡。

结果:正如预期的那样,随着使用的强标注比例的增加,模型在强标注数据上的性能稳步提高,达到与病理学家相当的性能 ([Formula: see text])。然而,当应用于具有 [Formula: see text] 的 WSI 分类场景时,性能急剧下降。此外,无论使用多少标注,它的性能都较低。当使用弱 WSI 标签 [Formula: see text] 微调模型以进行 Gleason 评分任务时,模型性能会提高。

结论:结合弱标注和强标注可提高使用组织微阵列 (TMA) 和 WSI 区域进行 Gleason 模式分类的强标注。我们的结果为训练结合少量标注数据和异构数据源的 CNN 模型提供了很好的策略。随着用于训练模型的标注数量的增加,在受控的 TMA 场景中,性能会提高。然而,当将经过训练的 TMA 模型直接应用于更具挑战性的 WSI 分类问题时,性能会受到阻碍。这表明,如果在 WSI 目标数据集上进行微调,用于前列腺癌 TMA 图像分类的良好预训练模型可能会导致最佳下游模型。我们已经在 https://github.com/ilmaro8/Digital_Pathology_Transfer_Learning 上提供了可重现本文实验的源代码存储库。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cbd/8105943/82b117bbe376/12880_2021_609_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cbd/8105943/74e56e57b066/12880_2021_609_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cbd/8105943/615e5ccf2a5e/12880_2021_609_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cbd/8105943/f6632dd7fbf1/12880_2021_609_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cbd/8105943/a616a37e1f71/12880_2021_609_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cbd/8105943/82b117bbe376/12880_2021_609_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cbd/8105943/74e56e57b066/12880_2021_609_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cbd/8105943/615e5ccf2a5e/12880_2021_609_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cbd/8105943/f6632dd7fbf1/12880_2021_609_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cbd/8105943/a616a37e1f71/12880_2021_609_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cbd/8105943/82b117bbe376/12880_2021_609_Fig5_HTML.jpg

相似文献

[1]
Combining weakly and strongly supervised learning improves strong supervision in Gleason pattern classification.

BMC Med Imaging. 2021-5-8

[2]
Semi-supervised training of deep convolutional neural networks with heterogeneous data and few local annotations: An experiment on prostate histopathology image classification.

Med Image Anal. 2021-10

[3]
Weakly supervised joint whole-slide segmentation and classification in prostate cancer.

Med Image Anal. 2023-10

[4]
Weakly Supervised Deep Learning for Whole Slide Lung Cancer Image Analysis.

IEEE Trans Cybern. 2020-9

[5]
Automatic diagnosis and grading of Prostate Cancer with weakly supervised learning on whole slide images.

Comput Biol Med. 2023-1

[6]
Masked hypergraph learning for weakly supervised histopathology whole slide image classification.

Comput Methods Programs Biomed. 2024-8

[7]
Deep Learning-Based Gleason Grading of Prostate Cancer From Histopathology Images-Role of Multiscale Decision Aggregation and Data Augmentation.

IEEE J Biomed Health Inform. 2020-5

[8]
The devil is in the details: a small-lesion sensitive weakly supervised learning framework for prostate cancer detection and grading.

Virchows Arch. 2023-3

[9]
Seeking an optimal approach for Computer-aided Diagnosis of Pulmonary Embolism.

Med Image Anal. 2024-1

[10]
A real use case of semi-supervised learning for mammogram classification in a local clinic of Costa Rica.

Med Biol Eng Comput. 2022-4

引用本文的文献

[1]
Multimodal integration strategies for clinical application in oncology.

Front Pharmacol. 2025-8-20

[2]
Harnessing artificial intelligence for prostate cancer management.

Cell Rep Med. 2024-4-16

[3]
Glioma subtype classification from histopathological images using in-domain and out-of-domain transfer learning: An experimental study.

Heliyon. 2024-3-6

[4]
Deep Learning Methodologies Applied to Digital Pathology in Prostate Cancer: A Systematic Review.

Diagnostics (Basel). 2023-8-14

[5]
Automated LVO detection and collateral scoring on CTA using a 3D self-configuring object detection network: a multi-center study.

Sci Rep. 2023-5-31

[6]
Inference of core needle biopsy whole slide images requiring definitive therapy for prostate cancer.

BMC Cancer. 2023-1-5

[7]
A Deep Learning Model for Prostate Adenocarcinoma Classification in Needle Biopsy Whole-Slide Images Using Transfer Learning.

Diagnostics (Basel). 2022-3-21

本文引用的文献

[1]
A Weak and Semi-supervised Segmentation Method for Prostate Cancer in TRUS Images.

J Digit Imaging. 2020-8

[2]
Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study.

Lancet Oncol. 2020-1-8

[3]
No pixel-level annotations needed.

Nat Biomed Eng. 2019-11

[4]
Staining Invariant Features for Improving Generalization of Deep Convolutional Neural Networks in Computational Pathology.

Front Bioeng Biotechnol. 2019-8-23

[5]
Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology.

Med Image Anal. 2019-8-21

[6]
Neural Image Compression for Gigapixel Histopathology Image Analysis.

IEEE Trans Pattern Anal Mach Intell. 2021-2

[7]
Deep Learning-Based Retrieval System for Gigapixel Histopathology Cases and the Open Access Literature.

J Pathol Inform. 2019-7-1

[8]
Clinical-grade computational pathology using weakly supervised deep learning on whole slide images.

Nat Med. 2019-7-15

[9]
Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer.

NPJ Digit Med. 2019-6-7

[10]
HistoQC: An Open-Source Quality Control Tool for Digital Pathology Slides.

JCO Clin Cancer Inform. 2019-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索