HES-SO Valais, Technopôle 3, 3960, Sierre, Switzerland.
Computer Science Centre (CUI), University of Geneva, Route de Drize 7, Battelle A, Carouge, Switzerland.
BMC Med Imaging. 2021 May 8;21(1):77. doi: 10.1186/s12880-021-00609-0.
BACKGROUND: One challenge to train deep convolutional neural network (CNNs) models with whole slide images (WSIs) is providing the required large number of costly, manually annotated image regions. Strategies to alleviate the scarcity of annotated data include: using transfer learning, data augmentation and training the models with less expensive image-level annotations (weakly-supervised learning). However, it is not clear how to combine the use of transfer learning in a CNN model when different data sources are available for training or how to leverage from the combination of large amounts of weakly annotated images with a set of local region annotations. This paper aims to evaluate CNN training strategies based on transfer learning to leverage the combination of weak and strong annotations in heterogeneous data sources. The trade-off between classification performance and annotation effort is explored by evaluating a CNN that learns from strong labels (region annotations) and is later fine-tuned on a dataset with less expensive weak (image-level) labels. RESULTS: As expected, the model performance on strongly annotated data steadily increases as the percentage of strong annotations that are used increases, reaching a performance comparable to pathologists ([Formula: see text]). Nevertheless, the performance sharply decreases when applied for the WSI classification scenario with [Formula: see text]. Moreover, it only provides a lower performance regardless of the number of annotations used. The model performance increases when fine-tuning the model for the task of Gleason scoring with the weak WSI labels [Formula: see text]. CONCLUSION: Combining weak and strong supervision improves strong supervision in classification of Gleason patterns using tissue microarrays (TMA) and WSI regions. Our results contribute very good strategies for training CNN models combining few annotated data and heterogeneous data sources. The performance increases in the controlled TMA scenario with the number of annotations used to train the model. Nevertheless, the performance is hindered when the trained TMA model is applied directly to the more challenging WSI classification problem. This demonstrates that a good pre-trained model for prostate cancer TMA image classification may lead to the best downstream model if fine-tuned on the WSI target dataset. We have made available the source code repository for reproducing the experiments in the paper: https://github.com/ilmaro8/Digital_Pathology_Transfer_Learning.
背景:使用全切片图像 (WSI) 训练深度卷积神经网络 (CNN) 模型的一个挑战是提供所需的大量昂贵的、手动标注的图像区域。缓解注释数据稀缺的策略包括:使用迁移学习、数据增强和使用成本较低的图像级注释进行训练(弱监督学习)。然而,目前尚不清楚如何在存在不同训练数据源的情况下,在 CNN 模型中结合使用迁移学习,也不清楚如何利用大量弱标注图像与一组局部区域标注相结合。本文旨在评估基于迁移学习的 CNN 训练策略,以利用异构数据源中弱标注和强标注的组合。通过评估从强标注(区域标注)学习的 CNN,并在具有成本较低的弱标注(图像级)数据集上进行微调,探索分类性能和标注工作之间的权衡。
结果:正如预期的那样,随着使用的强标注比例的增加,模型在强标注数据上的性能稳步提高,达到与病理学家相当的性能 ([Formula: see text])。然而,当应用于具有 [Formula: see text] 的 WSI 分类场景时,性能急剧下降。此外,无论使用多少标注,它的性能都较低。当使用弱 WSI 标签 [Formula: see text] 微调模型以进行 Gleason 评分任务时,模型性能会提高。
结论:结合弱标注和强标注可提高使用组织微阵列 (TMA) 和 WSI 区域进行 Gleason 模式分类的强标注。我们的结果为训练结合少量标注数据和异构数据源的 CNN 模型提供了很好的策略。随着用于训练模型的标注数量的增加,在受控的 TMA 场景中,性能会提高。然而,当将经过训练的 TMA 模型直接应用于更具挑战性的 WSI 分类问题时,性能会受到阻碍。这表明,如果在 WSI 目标数据集上进行微调,用于前列腺癌 TMA 图像分类的良好预训练模型可能会导致最佳下游模型。我们已经在 https://github.com/ilmaro8/Digital_Pathology_Transfer_Learning 上提供了可重现本文实验的源代码存储库。
Med Image Anal. 2023-10
IEEE Trans Cybern. 2020-9
Comput Methods Programs Biomed. 2024-8
Med Image Anal. 2024-1
Med Biol Eng Comput. 2022-4
Front Pharmacol. 2025-8-20
Cell Rep Med. 2024-4-16
Diagnostics (Basel). 2023-8-14
J Digit Imaging. 2020-8
Nat Biomed Eng. 2019-11
Front Bioeng Biotechnol. 2019-8-23
IEEE Trans Pattern Anal Mach Intell. 2021-2
JCO Clin Cancer Inform. 2019-4