Suppr超能文献

基因组解析宏基因组学表明支原体与鲑科鱼类宿主之间存在共生关系。

Genome-resolved metagenomics suggests a mutualistic relationship between Mycoplasma and salmonid hosts.

机构信息

Laboratory of Genomics and Molecular Medicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.

Center for Evolutionary Hologenomics, GLOBE institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

出版信息

Commun Biol. 2021 May 14;4(1):579. doi: 10.1038/s42003-021-02105-1.

Abstract

Salmonids are important sources of protein for a large proportion of the human population. Mycoplasma species are a major constituent of the gut microbiota of salmonids, often representing the majority of microbiota. Despite the frequent reported dominance of salmonid-related Mycoplasma species, little is known about the phylogenomic placement, functions and potential evolutionary relationships with their salmonid hosts. In this study, we utilise 2.9 billion metagenomic reads generated from 12 samples from three different salmonid host species to I) characterise and curate the first metagenome-assembled genomes (MAGs) of Mycoplasma dominating the intestines of three different salmonid species, II) establish the phylogeny of these salmonid candidate Mycoplasma species, III) perform a comprehensive pangenomic analysis of Mycoplasma, IV) decipher the putative functionalities of the salmonid MAGs and reveal specific functions expected to benefit the host. Our data provide a basis for future studies examining the composition and function of the salmonid microbiota.

摘要

鲑鱼是很大一部分人类的重要蛋白质来源。支原体是鲑鱼肠道微生物群的主要组成部分,通常代表了大多数微生物群。尽管经常报道鲑鱼相关支原体的优势,但对于它们在系统发育上的位置、功能以及与鲑鱼宿主的潜在进化关系知之甚少。在这项研究中,我们利用从三个不同鲑鱼宿主物种的 12 个样本中生成的 29 亿个宏基因组读数:I) 描述和整理主导三种不同鲑鱼肠道的支原体的第一个宏基因组组装基因组(MAGs);II) 建立这些鲑鱼候选支原体物种的系统发育;III) 对支原体进行全面的泛基因组分析;IV) 解码鲑鱼 MAGs 的推测功能,并揭示预期对宿主有益的特定功能。我们的数据为未来研究鲑鱼微生物群的组成和功能提供了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddf9/8121932/9fae972f01b9/42003_2021_2105_Fig1_HTML.jpg

相似文献

2
A Catalog of over 5,000 Metagenome-Assembled Microbial Genomes from the Caprinae Gut Microbiota.
Microbiol Spectr. 2022 Dec 21;10(6):e0221122. doi: 10.1128/spectrum.02211-22. Epub 2022 Nov 2.
4
Co-diversification of an intestinal Mycoplasma and its salmonid host.
ISME J. 2023 May;17(5):682-692. doi: 10.1038/s41396-023-01379-z. Epub 2023 Feb 17.
5
Genome-Resolved Characterization of Structure and Potential Functions of the Zebrafish Stool Microbiome.
Front Cell Infect Microbiol. 2022 Jun 15;12:910766. doi: 10.3389/fcimb.2022.910766. eCollection 2022.
6
Phylogenetic analysis of intestinal microbiota reveals novel Mycoplasma phylotypes in salmonid species.
Microb Pathog. 2020 Aug;145:104210. doi: 10.1016/j.micpath.2020.104210. Epub 2020 Apr 18.
7
Taxonomic, Genomic, and Functional Variation in the Gut Microbiomes of Wild Spotted Hyenas Across 2 Decades of Study.
mSystems. 2023 Feb 23;8(1):e0096522. doi: 10.1128/msystems.00965-22. Epub 2022 Dec 19.
8
The microbiome of the buffalo digestive tract.
Nat Commun. 2022 Feb 10;13(1):823. doi: 10.1038/s41467-022-28402-9.
9
A Bacterial Genome and Culture Collection of Gut Microbial in Weanling Piglet.
Microbiol Spectr. 2022 Feb 23;10(1):e0241721. doi: 10.1128/spectrum.02417-21. Epub 2022 Feb 16.

引用本文的文献

3
Efficiency comparison of DNA extraction kits for analysing the cockle gut bacteriome.
Heliyon. 2024 Oct 9;10(20):e38846. doi: 10.1016/j.heliyon.2024.e38846. eCollection 2024 Oct 30.
5
Genomic and functional characterization of the Atlantic salmon gut microbiome in relation to nutrition and health.
Nat Microbiol. 2024 Nov;9(11):3059-3074. doi: 10.1038/s41564-024-01830-7. Epub 2024 Oct 14.
6
A brain microbiome in salmonids at homeostasis.
Sci Adv. 2024 Sep 20;10(38):eado0277. doi: 10.1126/sciadv.ado0277. Epub 2024 Sep 18.
7
Sampling fish gut microbiota - A genome-resolved metagenomic approach.
Ecol Evol. 2024 Sep 17;14(9):e70302. doi: 10.1002/ece3.70302. eCollection 2024 Sep.
8
Age and environment are the main drivers shaping the wild common sole (Solea solea) microbiota.
BMC Ecol Evol. 2024 Sep 6;24(1):118. doi: 10.1186/s12862-024-02303-5.
9

本文引用的文献

1
Genome erosion and evidence for an intracellular niche - exploring the biology of mycoplasmas in Atlantic salmon.
Aquaculture. 2021 Aug 30;541:736772. doi: 10.1016/j.aquaculture.2021.736772.
4
Intestinal microbial communities of rainbow trout (Oncorhynchus mykiss) may be improved by feeding a Hermetia illucens meal/low-fishmeal diet.
Fish Physiol Biochem. 2021 Apr;47(2):365-380. doi: 10.1007/s10695-020-00918-1. Epub 2021 Jan 3.
5
Diversity of gut microbiomes in marine fishes is shaped by host-related factors.
Mol Ecol. 2020 Dec;29(24):5019-5034. doi: 10.1111/mec.15699. Epub 2020 Nov 9.
6
Genomic Islands in Mycoplasmas.
Genes (Basel). 2020 Jul 22;11(8):836. doi: 10.3390/genes11080836.
7
Gene Loss Predictably Drives Evolutionary Adaptation.
Mol Biol Evol. 2020 Oct 1;37(10):2989-3002. doi: 10.1093/molbev/msaa172.
9
The role of the gut microbiome in sustainable teleost aquaculture.
Proc Biol Sci. 2020 May 13;287(1926):20200184. doi: 10.1098/rspb.2020.0184. Epub 2020 May 6.
10
New Methods to Calculate Concordance Factors for Phylogenomic Datasets.
Mol Biol Evol. 2020 Sep 1;37(9):2727-2733. doi: 10.1093/molbev/msaa106.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验