Suppr超能文献

通讯时代的误解:大流行时期症状监测的众包框架。

Miscommunication in the age of communication: A crowdsourcing framework for symptom surveillance at the time of pandemics.

机构信息

Department of MIS, Operations & Supply Chain Management, Business Analytics, University of Dayton, Dayton, OH, 45469, USA.

Department of Information Systems and Supply Chain Management, Raj Soin College of Business, Wright State University, Dayton, OH, 45435, USA.

出版信息

Int J Med Inform. 2021 Jul;151:104486. doi: 10.1016/j.ijmedinf.2021.104486. Epub 2021 May 11.

Abstract

OBJECTIVE

There was a significant delay in compiling a complete list of the symptoms of COVID-19 during the 2020 outbreak of the disease. When there is little information about the symptoms of a novel disease, interventions to contain the spread of the disease would be suboptimal because people experiencing symptoms that are not yet known to be related to the disease may not limit their social activities. Our goal was to understand whether users' social media postings about the symptoms of novel diseases could be used to develop a complete list of the disease symptoms in a shorter time.

MATERIALS AND METHODS

We used the Twitter API to download tweets that contained 'coronavirus', 'COVID-19', and 'symptom'. After data cleaning, the resulting dataset consisted of over 95,000 unique, English tweets posted between January 17, 2020 and March 15, 2020 that contained references to the symptoms of COVID-19. We analyzed this data using network and time series methods.

RESULTS

We found that a complete list of the symptoms of COVID-19 could have been compiled by mid-March 2020, before most states in the U.S. announced a lockdown and about 75 days earlier than the list was completed on CDC's website.

DISCUSSION & CONCLUSION: We conclude that national and international health agencies should use the crowd-sourced intelligence obtained from social media to develop effective symptom surveillance systems in the early stages of pandemics. We propose a high-level framework that facilitates the collection, analysis, and dissemination of information that are posted in various languages and on different social media platforms about the symptoms of novel diseases.

摘要

目的

在 2020 年 COVID-19 疫情爆发期间,编制一份完整的 COVID-19 症状清单的工作出现了重大延误。当对一种新型疾病的症状知之甚少时,控制疾病传播的干预措施将是不理想的,因为出现尚未被认为与疾病有关的症状的人可能不会限制他们的社交活动。我们的目标是了解用户对新型疾病症状的社交媒体帖子是否可以用于在更短的时间内制定出一份完整的疾病症状清单。

材料和方法

我们使用 Twitter API 下载包含“coronavirus”、“COVID-19”和“symptom”的推文。在数据清理之后,得到的数据集由 95000 多个独特的、在 2020 年 1 月 17 日至 3 月 15 日期间发布的、包含 COVID-19 症状参考的英文推文组成。我们使用网络和时间序列方法分析了这些数据。

结果

我们发现,到 2020 年 3 月中旬,就可以编制出一份完整的 COVID-19 症状清单,这比美国大多数州宣布封锁的时间早了大约 75 天,也比疾病预防控制中心网站上完成的时间早了大约 75 天。

讨论与结论

我们的结论是,国家和国际卫生机构应该利用从社交媒体上获得的众包智能,在大流行的早期阶段开发有效的症状监测系统。我们提出了一个高级框架,便于收集、分析和传播关于新型疾病症状的各种语言和不同社交媒体平台上发布的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34db/8111883/f1ebb55dc7cd/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验