Suppr超能文献

一种用于在大流行中早期检测慢性风险因素的解释性分析框架。

An explanatory analytics framework for early detection of chronic risk factors in pandemics.

作者信息

Davazdahemami Behrooz, Zolbanin Hamed M, Delen Dursun

机构信息

Department of IT & Supply Chain Management, University of Wisconsin-Whitewater, United States.

Department of MIS, Operations & Supply Chain Management, Business Analytics, University of Dayton, United States.

出版信息

Healthc Anal (N Y). 2022 Nov;2:100020. doi: 10.1016/j.health.2022.100020. Epub 2022 Jan 10.

Abstract

Timely decision-making in national and global health emergencies such as pandemics is critically important from various aspects. Especially, early identification of risk factors of contagious viral diseases can lead to efficient management of limited healthcare resources and saving lives by prioritizing at-risk patients. In this study, we propose a hybrid artificial intelligence (AI) framework to identify major chronic risk factors of novel, contagious diseases as early as possible at the time of pandemics. The proposed framework combines evolutionary search algorithms with machine learning and the novel explanatory AI (XAI) methods to detect the most critical risk factors, use them to predict patients at high risk of mortality, and analyze the risk factors at the individual level for each high-risk patient. The proposed framework was validated using data from a repository of electronic health records of early COVID-19 patients in the US. A chronological analysis of the chronic risk factors identified using our proposed approach revealed that those factors could have been identified months before they were determined by clinical studies and/or announced by the United States health officials.

摘要

在大流行等国家和全球卫生紧急情况中及时做出决策,从各个方面来看都至关重要。特别是,尽早识别传染性病毒疾病的风险因素,可以通过对高危患者进行优先排序,实现对有限医疗资源的有效管理并挽救生命。在本研究中,我们提出了一种混合人工智能(AI)框架,以便在大流行期间尽早识别新型传染病的主要慢性风险因素。所提出的框架将进化搜索算法与机器学习以及新颖的可解释人工智能(XAI)方法相结合,以检测最关键的风险因素,利用这些因素预测高死亡风险患者,并针对每位高危患者在个体层面分析风险因素。使用来自美国早期新冠肺炎患者电子健康记录存储库的数据对所提出的框架进行了验证。对使用我们提出的方法识别出的慢性风险因素进行的时间顺序分析表明,这些因素在被临床研究确定和/或美国卫生官员公布之前几个月就可以被识别出来。

相似文献

1
An explanatory analytics framework for early detection of chronic risk factors in pandemics.
Healthc Anal (N Y). 2022 Nov;2:100020. doi: 10.1016/j.health.2022.100020. Epub 2022 Jan 10.
2
An explanatory machine learning framework for studying pandemics: The case of COVID-19 emergency department readmissions.
Decis Support Syst. 2022 Oct;161:113730. doi: 10.1016/j.dss.2022.113730. Epub 2022 Jan 18.
4
A real-time integrated framework to support clinical decision making for covid-19 patients.
Comput Methods Programs Biomed. 2022 Apr;217:106655. doi: 10.1016/j.cmpb.2022.106655. Epub 2022 Jan 29.
5
PaCAR: COVID-19 Pandemic Control Decision Making via Large-Scale Agent-Based Modeling and Deep Reinforcement Learning.
Med Decis Making. 2022 Nov;42(8):1064-1077. doi: 10.1177/0272989X221107902. Epub 2022 Jul 1.
6
Artificial Intelligence Functionalities During the COVID-19 Pandemic.
Disaster Med Public Health Prep. 2023 Feb 27;17:e336. doi: 10.1017/dmp.2023.3.
8
A Novel Smart City-Based Framework on Perspectives for Application of Machine Learning in Combating COVID-19.
Biomed Res Int. 2021 Sep 11;2021:5546790. doi: 10.1155/2021/5546790. eCollection 2021.
9
Responsible AI for cardiovascular disease detection: Towards a privacy-preserving and interpretable model.
Comput Methods Programs Biomed. 2024 Sep;254:108289. doi: 10.1016/j.cmpb.2024.108289. Epub 2024 Jun 17.
10
Machine learning algorithms for predicting COVID-19 mortality in Ethiopia.
BMC Public Health. 2024 Jun 28;24(1):1728. doi: 10.1186/s12889-024-19196-0.

引用本文的文献

1
The application of explainable artificial intelligence (XAI) in electronic health record research: A scoping review.
Digit Health. 2024 Oct 30;10:20552076241272657. doi: 10.1177/20552076241272657. eCollection 2024 Jan-Dec.
2
Hyperparameter optimization for cardiovascular disease data-driven prognostic system.
Vis Comput Ind Biomed Art. 2023 Aug 1;6(1):16. doi: 10.1186/s42492-023-00143-6.
3
An analytical approach to evaluate the impact of age demographics in a pandemic.
Stoch Environ Res Risk Assess. 2023 Jun 8:1-15. doi: 10.1007/s00477-023-02477-2.
4
A Machine Learning Framework for Assessing the Risk of Venous Thromboembolism in Patients Undergoing Hip or Knee Replacement.
J Healthc Inform Res. 2022 Oct 25;6(4):423-441. doi: 10.1007/s41666-022-00121-2. eCollection 2022 Dec.
5
Interpretable machine learning analysis to identify risk factors for diabetes using the anonymous living census data of Japan.
Health Technol (Berl). 2023;13(1):119-131. doi: 10.1007/s12553-023-00730-w. Epub 2023 Jan 26.

本文引用的文献

2
Prevalence and outcomes of malnutrition among hospitalized COVID-19 patients: A systematic review and meta-analysis.
Clin Nutr ESPEN. 2021 Jun;43:174-183. doi: 10.1016/j.clnesp.2021.03.002. Epub 2021 Mar 17.
3
Miscommunication in the age of communication: A crowdsourcing framework for symptom surveillance at the time of pandemics.
Int J Med Inform. 2021 Jul;151:104486. doi: 10.1016/j.ijmedinf.2021.104486. Epub 2021 May 11.
5
Immunosuppression as a risk factor for COVID-19: a meta-analysis.
Intern Med J. 2021 Feb;51(2):199-205. doi: 10.1111/imj.15142.
6
Hypertension is a clinically important risk factor for critical illness and mortality in COVID-19: A meta-analysis.
Nutr Metab Cardiovasc Dis. 2021 Mar 10;31(3):745-755. doi: 10.1016/j.numecd.2020.12.009. Epub 2020 Dec 11.
7
Mortality in chronic kidney disease patients with COVID-19: a systematic review and meta-analysis.
Int Urol Nephrol. 2021 Aug;53(8):1623-1629. doi: 10.1007/s11255-020-02740-3. Epub 2021 Jan 3.
8
Automated model versus treating physician for predicting survival time of patients with metastatic cancer.
J Am Med Inform Assoc. 2021 Jun 12;28(6):1108-1116. doi: 10.1093/jamia/ocaa290.
9
Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission.
Nat Commun. 2020 Dec 9;11(1):6317. doi: 10.1038/s41467-020-19741-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验