文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

应激条件下 uORFs 介导翻译调控的影响。

Impact of uORFs in mediating regulation of translation in stress conditions.

机构信息

Evolutionary Genomics Group, Research Programme on Biomedical Informatics, Hospital del Mar Medical Research Institute (IMIM) and Universitat Pompeu Fabra (UPF), Barcelona, Spain.

Bioinformatics Knowledge Center, Howest University of Applied Sciences, Bruges, Belgium.

出版信息

BMC Mol Cell Biol. 2021 May 16;22(1):29. doi: 10.1186/s12860-021-00363-9.


DOI:10.1186/s12860-021-00363-9
PMID:33992089
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8126119/
Abstract

BACKGROUND: A large fraction of genes contains upstream ORFs (uORFs) in the 5' untranslated region (5'UTR). The translation of uORFs can inhibit the translation of the main coding sequence, for example by causing premature dissociation of the two ribosomal units or ribosome stalling. However, it is currently unknown if most uORFs are inhibitory or if this activity is restricted to specific cases. Here we interrogate ribosome profiling data from three different stress experiments in yeast to gain novel insights into this question. RESULTS: By comparing ribosome occupancies in different conditions and experiments we obtain strong evidence that, in comparison to primary coding sequences (CDS), which undergo translational arrest during stress, the translation of uORFs is mostly unaffected by changes in the environment. As a result, the relative abundance of uORF-encoded peptides increases during stress. In general, the changes in the translational efficiency of regions containing uORFs do not seem to affect downstream translation. The exception are uORFs found in a subset of genes that are significantly up-regulated at the level of translation during stress; these uORFs tend to be translated at lower levels in stress conditions than in optimal growth conditions, facilitating the translation of the CDS during stress. We find new examples of uORF-mediated regulation of translation, including the Gcn4 functional homologue fil1 and ubi4 genes in S. pombe. CONCLUSION: We find evidence that the relative amount of uORF-encoded peptides increases during stress. The increased translation of uORFs is however uncoupled from the general CDS translational repression observed during stress. In a subset of genes that encode proteins that need to be rapidly synthesized upon stress uORFs act as translational switches.

摘要

背景:大量基因的 5'非翻译区(5'UTR)中含有上游开放阅读框(uORFs)。uORFs 的翻译可以抑制主要编码序列的翻译,例如通过导致两个核糖体单元过早解离或核糖体停滞。然而,目前尚不清楚大多数 uORFs 是否具有抑制作用,或者这种活性是否仅限于特定情况。在这里,我们通过分析酵母中三种不同应激实验的核糖体图谱数据,来深入探讨这个问题。

结果:通过比较不同条件和实验中的核糖体占有率,我们获得了强有力的证据表明,与在应激过程中经历翻译暂停的主要编码序列(CDS)相比,uORFs 的翻译受环境变化的影响不大。因此,在应激期间,uORF 编码肽的相对丰度增加。一般来说,含有 uORF 的区域翻译效率的变化似乎不会影响下游翻译。例外的是在应激期间翻译水平显著上调的一组基因中发现的 uORFs;这些 uORFs 在应激条件下的翻译水平低于最佳生长条件下的翻译水平,从而促进了 CDS 在应激期间的翻译。我们发现了新的 uORF 介导的翻译调控的例子,包括 S. pombe 中的 Gcn4 功能同源物 fil1 和 ubi4 基因。

结论:我们有证据表明,在应激期间,uORF 编码肽的相对含量增加。然而,uORFs 的翻译增加与应激过程中观察到的一般 CDS 翻译抑制无关。在一组编码应激时需要快速合成的蛋白质的基因中,uORFs 作为翻译开关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbed/8126119/984059c1c44a/12860_2021_363_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbed/8126119/8b8b6181315b/12860_2021_363_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbed/8126119/a0ff5deeb53a/12860_2021_363_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbed/8126119/06e3d485ebdb/12860_2021_363_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbed/8126119/984059c1c44a/12860_2021_363_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbed/8126119/8b8b6181315b/12860_2021_363_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbed/8126119/a0ff5deeb53a/12860_2021_363_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbed/8126119/06e3d485ebdb/12860_2021_363_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbed/8126119/984059c1c44a/12860_2021_363_Fig4_HTML.jpg

相似文献

[1]
Impact of uORFs in mediating regulation of translation in stress conditions.

BMC Mol Cell Biol. 2021-5-16

[2]
Translation of upstream open reading frames in a model of neuronal differentiation.

BMC Genomics. 2019-5-20

[3]
Temperature-dependent regulation of upstream open reading frame translation in S. cerevisiae.

BMC Biol. 2019-12-6

[4]
Dual modes of natural selection on upstream open reading frames.

Mol Biol Evol. 2007-8

[5]
Impacts of uORF codon identity and position on translation regulation.

Nucleic Acids Res. 2019-9-26

[6]
Upstream ORFs are prevalent translational repressors in vertebrates.

EMBO J. 2016-4-1

[7]
Genome-wide identification of Arabidopsis non-AUG-initiated upstream ORFs with evolutionarily conserved regulatory sequences that control protein expression levels.

Plant Mol Biol. 2023-1

[8]
An upstream open reading frame regulates translation of GADD34 during cellular stresses that induce eIF2alpha phosphorylation.

J Biol Chem. 2009-3-13

[9]
Ribo-uORF: a comprehensive data resource of upstream open reading frames (uORFs) based on ribosome profiling.

Nucleic Acids Res. 2023-1-6

[10]
Unraveling the influences of sequence and position on yeast uORF activity using massively parallel reporter systems and machine learning.

Elife. 2023-5-25

引用本文的文献

[1]
Translational reprogramming under heat stress: a plant's perspective.

R Soc Open Sci. 2025-7-16

[2]
The dual-coding gene SLC35A4 protects against oxidative stress.

Protein Sci. 2025-7

[3]
Full-length mRNA sequencing resolves novel variation in 5' UTR length for genes expressed during human CD4 T-cell activation.

Immunogenetics. 2025-2-5

[4]
Multilevel Gene Expression Changes in Lineages Containing Adaptive Copy Number Variants.

Mol Biol Evol. 2025-2-3

[5]
Tiny but mighty: Diverse functions of uORFs that regulate gene expression.

Comput Struct Biotechnol J. 2024-10-28

[6]
Calorie restriction and rapamycin distinctly restore non-canonical ORF translation in the muscles of aging mice.

NPJ Regen Med. 2024-9-19

[7]
Understanding the regulation of protein synthesis under stress conditions.

Biophys J. 2024-10-15

[8]
An Inner Mitochondrial Membrane Microprotein from the SLC35A4 Upstream ORF Regulates Cellular Metabolism.

J Mol Biol. 2024-5-15

[9]
Identification of molecular signatures defines the differential proteostasis response in induced spinal and cranial motor neurons.

Cell Rep. 2024-3-26

[10]
Untranslated yet indispensable-UTRs act as key regulators in the environmental control of gene expression.

J Exp Bot. 2024-7-23

本文引用的文献

[1]
Developmental regulation of canonical and small ORF translation from mRNAs.

Genome Biol. 2020-5-29

[2]
Characterising the loss-of-function impact of 5' untranslated region variants in 15,708 individuals.

Nat Commun. 2020-5-27

[3]
Pervasive functional translation of noncanonical human open reading frames.

Science. 2020-3-6

[4]
eIF1 discriminates against suboptimal initiation sites to prevent excessive uORF translation genome-wide.

RNA. 2020-1-8

[5]
Extensive post-transcriptional buffering of gene expression in the response to severe oxidative stress in baker's yeast.

Sci Rep. 2019-7-29

[6]
The Translational Landscape of the Human Heart.

Cell. 2019-5-30

[7]
Translation of Small Open Reading Frames: Roles in Regulation and Evolutionary Innovation.

Trends Genet. 2018-12-31

[8]
Translational initiation factor eIF5 replaces eIF1 on the 40S ribosomal subunit to promote start-codon recognition.

Elife. 2018-11-30

[9]
Genome-wide maps of ribosomal occupancy provide insights into adaptive evolution and regulatory roles of uORFs during Drosophila development.

PLoS Biol. 2018-7-20

[10]
Translation of neutrally evolving peptides provides a basis for de novo gene evolution.

Nat Ecol Evol. 2018-3-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索