Suppr超能文献

在心肌重构的体外模型中,肌节和成纤维细胞之间存在协同作用的证据。

Evidence for synergy between sarcomeres and fibroblasts in an in vitro model of myocardial reverse remodeling.

机构信息

Department of Biomedical Engineering, Yale University, New Haven, CT, USA.

Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA.

出版信息

J Mol Cell Cardiol. 2021 Sep;158:11-25. doi: 10.1016/j.yjmcc.2021.05.005. Epub 2021 May 14.

Abstract

We have created a novel in-vitro platform to study reverse remodeling of engineered heart tissue (EHT) after mechanical unloading. EHTs were created by seeding decellularized porcine myocardial sections with a mixture of primary neonatal rat ventricular myocytes and cardiac fibroblasts. Each end of the ribbon-like constructs was fixed to a plastic clip, allowing the tissues to be statically stretched or slackened. Inelastic deformation was introduced by stretching tissues by 20% of their original length. EHTs were subsequently unloaded by returning tissues to their original, shorter length. Mechanical characterization of EHTs immediately after unloading and at subsequent time points confirmed the presence of a reverse-remodeling process, through which stress-free tissue length was increased after chronic stretch but gradually decreased back to its original value within 9 days. When a cardiac myosin inhibitor was applied to tissues after unloading, EHTs failed to completely recover their passive and active mechanical properties, suggesting a role for actomyosin contraction in reverse remodeling. Selectively inhibiting cardiomyocyte contraction or fibroblast activity after mechanical unloading showed that contractile activity of both cell types was required to achieve full remodeling. Similar tests with EHTs formed from human induced pluripotent stem cell-derived cardiomyocytes also showed reverse remodeling that was enhanced when treated with omecamtiv mecarbil, a myosin activator. These experiments suggest essential roles for active sarcomeric contraction and fibroblast activity in reverse remodeling of myocardium after mechanical unloading. Our findings provide a mechanistic rationale for designing potential therapies to encourage reverse remodeling in patient hearts.

摘要

我们创建了一种新颖的体外平台,用于研究机械卸载后工程心脏组织(EHT)的反向重构。EHT 是通过将原代新生大鼠心室肌细胞和心肌成纤维细胞的混合物接种到脱细胞猪心肌切片上来构建的。带状结构的每一端都固定在塑料夹上,使组织可以静态拉伸或松弛。通过将组织拉伸到原始长度的 20%来引入非弹性变形。然后通过将组织恢复到原始较短的长度来卸载 EHT。EHT 在卸载后和随后的时间点进行机械特性分析,证实了存在反向重构过程,通过该过程,在慢性拉伸后无应力组织长度增加,但在 9 天内逐渐恢复到原始值。当在卸载后将心脏肌球蛋白抑制剂应用于组织时,EHT 未能完全恢复其被动和主动机械特性,这表明肌球蛋白收缩在反向重构中起作用。在机械卸载后选择性抑制心肌细胞收缩或成纤维细胞活性表明,两种细胞类型的收缩活性对于实现完全重构是必需的。用源自人诱导多能干细胞的心肌细胞构建的 EHT 进行类似的测试也显示出反向重构,当用肌球蛋白激活剂 omecamtiv mecarbil 处理时,这种重构得到增强。这些实验表明,在机械卸载后心肌的反向重构中,活性肌节收缩和成纤维细胞活性起着重要作用。我们的发现为设计潜在的治疗方法以鼓励患者心脏的反向重构提供了机制基础。

相似文献

1
Evidence for synergy between sarcomeres and fibroblasts in an in vitro model of myocardial reverse remodeling.
J Mol Cell Cardiol. 2021 Sep;158:11-25. doi: 10.1016/j.yjmcc.2021.05.005. Epub 2021 May 14.
3
Increased length-dependent activation of human engineered heart tissue after chronic α-adrenergic agonist treatment: testing a novel heart failure therapy.
Am J Physiol Heart Circ Physiol. 2023 Mar 1;324(3):H293-H304. doi: 10.1152/ajpheart.00279.2022. Epub 2023 Jan 13.
4
Functional improvement and maturation of rat and human engineered heart tissue by chronic electrical stimulation.
J Mol Cell Cardiol. 2014 Sep;74:151-61. doi: 10.1016/j.yjmcc.2014.05.009. Epub 2014 May 19.
5
Mavacamten preserves length-dependent contractility and improves diastolic function in human engineered heart tissue.
Am J Physiol Heart Circ Physiol. 2021 Mar 1;320(3):H1112-H1123. doi: 10.1152/ajpheart.00325.2020. Epub 2021 Jan 15.
6
A myosin activator improves actin assembly and sarcomere function of human-induced pluripotent stem cell-derived cardiomyocytes with a troponin T point mutation.
Am J Physiol Heart Circ Physiol. 2016 Jul 1;311(1):H107-17. doi: 10.1152/ajpheart.00162.2016. Epub 2016 May 6.
8
Engineered heart tissue models from hiPSC-derived cardiomyocytes and cardiac ECM for disease modeling and drug testing applications.
Acta Biomater. 2019 Jul 1;92:145-159. doi: 10.1016/j.actbio.2019.05.016. Epub 2019 May 7.
9
SarcTrack.
Circ Res. 2019 Apr 12;124(8):1172-1183. doi: 10.1161/CIRCRESAHA.118.314505.
10
Recapitulating maladaptive, multiscale remodeling of failing myocardium on a chip.
Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):9770-5. doi: 10.1073/pnas.1304913110. Epub 2013 May 28.

引用本文的文献

1
Omecamtiv mecarbil in precision-cut living heart failure slices: A story of a double-edged sword.
J Mol Cell Cardiol Plus. 2023 Jul 22;5:100040. doi: 10.1016/j.jmccpl.2023.100040. eCollection 2023 Sep.
2
Animal Models for Mechanical Circulatory Support: A Research Review.
Rev Cardiovasc Med. 2024 Sep 29;25(10):351. doi: 10.31083/j.rcm2510351. eCollection 2024 Oct.
3
Evaluation of Porcine Psoas Major as a Scaffold Material for Engineered Heart Tissues.
Tissue Eng Part C Methods. 2023 Oct;29(10):459-468. doi: 10.1089/ten.TEC.2023.0064. Epub 2023 Aug 10.
5
The Case for, and Challenges of, Human Cardiac Tissue in Advancing Phosphoprotein Research.
Front Physiol. 2022 Mar 23;13:853511. doi: 10.3389/fphys.2022.853511. eCollection 2022.
6
Loss of crossbridge inhibition drives pathological cardiac hypertrophy in patients harboring the TPM1 E192K mutation.
J Gen Physiol. 2021 Sep 6;153(9). doi: 10.1085/jgp.202012640. Epub 2021 Jul 28.

本文引用的文献

2
Cardiac foetal reprogramming: a tool to exploit novel treatment targets for the failing heart.
J Intern Med. 2020 Nov;288(5):491-506. doi: 10.1111/joim.13094. Epub 2020 Jun 17.
3
Contractile work directly modulates mitochondrial protein levels in human engineered heart tissues.
Am J Physiol Heart Circ Physiol. 2020 Jun 1;318(6):H1516-H1524. doi: 10.1152/ajpheart.00055.2020. Epub 2020 May 8.
4
Cardiomyocyte mechanodynamics under conditions of actin remodelling.
Philos Trans R Soc Lond B Biol Sci. 2019 Nov 25;374(1786):20190081. doi: 10.1098/rstb.2019.0081. Epub 2019 Oct 7.
5
Extracellular Matrix From Hypertrophic Myocardium Provokes Impaired Twitch Dynamics in Healthy Cardiomyocytes.
JACC Basic Transl Sci. 2019 Jul 24;4(4):495-505. doi: 10.1016/j.jacbts.2019.03.004. eCollection 2019 Aug.
7
Bridge to recovery in children on ventricular assist devices-protocol, predictors of recovery, and long-term follow-up.
J Heart Lung Transplant. 2018 Dec;37(12):1459-1466. doi: 10.1016/j.healun.2018.08.005. Epub 2018 Aug 11.
8
Role of paediatric assist device in bridge to transplant.
Ann Cardiothorac Surg. 2018 Jan;7(1):82-98. doi: 10.21037/acs.2018.01.03.
10
Reverse remodelling and myocardial recovery in heart failure.
Nat Rev Cardiol. 2018 Feb;15(2):83-96. doi: 10.1038/nrcardio.2017.139. Epub 2017 Sep 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验