Suppr超能文献

国家 COVID 队列协作组织(N3C):原理、设计、基础设施和部署。

The National COVID Cohort Collaborative (N3C): Rationale, design, infrastructure, and deployment.

机构信息

Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, Oregon, USA.

Translational and Integrative Sciences Center, Department of Molecular Toxicology, Oregon State University, Corvallis, Oregon, USA.

出版信息

J Am Med Inform Assoc. 2021 Mar 1;28(3):427-443. doi: 10.1093/jamia/ocaa196.

Abstract

OBJECTIVE

Coronavirus disease 2019 (COVID-19) poses societal challenges that require expeditious data and knowledge sharing. Though organizational clinical data are abundant, these are largely inaccessible to outside researchers. Statistical, machine learning, and causal analyses are most successful with large-scale data beyond what is available in any given organization. Here, we introduce the National COVID Cohort Collaborative (N3C), an open science community focused on analyzing patient-level data from many centers.

MATERIALS AND METHODS

The Clinical and Translational Science Award Program and scientific community created N3C to overcome technical, regulatory, policy, and governance barriers to sharing and harmonizing individual-level clinical data. We developed solutions to extract, aggregate, and harmonize data across organizations and data models, and created a secure data enclave to enable efficient, transparent, and reproducible collaborative analytics.

RESULTS

Organized in inclusive workstreams, we created legal agreements and governance for organizations and researchers; data extraction scripts to identify and ingest positive, negative, and possible COVID-19 cases; a data quality assurance and harmonization pipeline to create a single harmonized dataset; population of the secure data enclave with data, machine learning, and statistical analytics tools; dissemination mechanisms; and a synthetic data pilot to democratize data access.

CONCLUSIONS

The N3C has demonstrated that a multisite collaborative learning health network can overcome barriers to rapidly build a scalable infrastructure incorporating multiorganizational clinical data for COVID-19 analytics. We expect this effort to save lives by enabling rapid collaboration among clinicians, researchers, and data scientists to identify treatments and specialized care and thereby reduce the immediate and long-term impacts of COVID-19.

摘要

目的

2019 年冠状病毒病(COVID-19)带来了社会挑战,需要迅速共享数据和知识。尽管组织内有大量临床数据,但这些数据在很大程度上无法为外部研究人员所获取。统计、机器学习和因果分析最适合使用超出任何给定组织可用规模的数据。在这里,我们介绍了国家 COVID 队列协作(N3C),这是一个专注于分析来自多个中心的患者水平数据的开放科学社区。

材料与方法

临床与转化科学奖计划和科学界创建了 N3C,以克服在共享和协调个体临床数据方面存在的技术、监管、政策和治理障碍。我们开发了从组织和数据模型中提取、聚合和协调数据的解决方案,并创建了一个安全的数据飞地,以实现高效、透明和可重复的协作分析。

结果

我们通过包容性的工作组组织,为组织和研究人员创建了法律协议和治理;开发了数据提取脚本,以识别和纳入阳性、阴性和可能的 COVID-19 病例;创建了一个数据质量保证和协调管道,以创建一个单一的协调数据集;将数据、机器学习和统计分析工具填充到安全的数据飞地中;开发了传播机制;并开展了合成数据试点,以实现数据访问的民主化。

结论

N3C 表明,多站点协作学习健康网络可以克服障碍,迅速构建一个可扩展的基础设施,纳入多组织的 COVID-19 分析临床数据。我们希望通过促进临床医生、研究人员和数据科学家之间的快速合作,为识别治疗方法和特殊护理提供支持,从而减少 COVID-19 的当前和长期影响,从而拯救生命。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6f4/7936527/a067cd8e525c/ocaa196f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验