Center for Computational Biology, Flatiron Institute, New York, USA.
Expert Opin Drug Discov. 2021 Sep;16(9):1025-1044. doi: 10.1080/17460441.2021.1918097. Epub 2021 May 31.
: Structure-guided drug discovery relies on accurate computational methods for modeling macromolecules. Simulations provide means of predicting macromolecular folds, of discovering function from structure, and of designing macromolecules to serve as drugs. Success rates are limited for any of these tasks, however. Recently, deep neural network-based methods have greatly enhanced the accuracy of predictions of protein structure from sequence, generating excitement about the potential impact of deep learning.: This review introduces biologists to deep neural network architecture, surveys recent successes of deep learning in structure prediction, and discusses emerging deep learning-based approaches for structure-function analysis and design. Particular focus is given to the interplay between simulation-based and neural network-based approaches.: As deep learning grows integral to macromolecular modeling, simulation- and neural network-based approaches must grow more tightly interconnected. Modular software architecture must emerge allowing both types of tools to be combined with maximal versatility. Open sharing of code under permissive licenses will be essential. Although experiments will remain the gold standard for reliable information to guide drug discovery, we may soon see successful drug development projects based on high-accuracy predictions from algorithms that combine simulation with deep learning - the ultimate validation of this combination's power.
: 基于结构的药物发现依赖于用于模拟大分子的精确计算方法。模拟提供了预测大分子折叠、从结构中发现功能以及设计用作药物的大分子的手段。然而,这些任务中的任何一个的成功率都受到限制。最近,基于深度神经网络的方法极大地提高了从序列预测蛋白质结构的准确性,这引发了人们对深度学习潜在影响的兴奋。: 本文向生物学家介绍了深度神经网络架构,调查了深度学习在结构预测方面的最新成功,并讨论了新兴的基于深度学习的结构-功能分析和设计方法。特别关注基于模拟和基于神经网络的方法之间的相互作用。: 随着深度学习成为大分子建模不可或缺的一部分,基于模拟和基于神经网络的方法必须更加紧密地相互连接。必须出现模块化软件架构,以允许最大限度地灵活地组合这两种类型的工具。在许可协议下开放共享代码将是必不可少的。尽管实验仍然是指导药物发现的可靠信息的黄金标准,但我们可能很快就会看到基于将模拟与深度学习相结合的算法的成功药物开发项目,这将最终验证这种组合的力量。