Evotec (U.K.) Ltd., Abingdon, Oxfordshire, UK.
Methods Mol Biol. 2022;2390:261-271. doi: 10.1007/978-1-0716-1787-8_11.
Computational methods play an increasingly important role in drug discovery. Structure-based drug design (SBDD), in particular, includes techniques that take into account the structure of the macromolecular target to predict compounds that are likely to establish optimal interactions with the binding site. The current interest in machine learning algorithms based on deep neural networks encouraged the application of deep learning to SBDD related problems. This chapter covers selected works in this active area of research.
计算方法在药物发现中扮演着越来越重要的角色。结构为基础的药物设计(SBDD),特别是包含了一些技术,这些技术考虑了大分子靶标的结构,以预测那些可能与结合部位建立最佳相互作用的化合物。目前对基于深度神经网络的机器学习算法的兴趣,鼓励了将深度学习应用于 SBDD 相关问题。这一章涵盖了该研究领域的一些精选作品。