Vadivukkarasan M
Department of Mechanical Engineering, National Institute of Technology Puducherry, Karaikal, 609609, India.
Eur J Mech B Fluids. 2021 Sep-Oct;89:15-20. doi: 10.1016/j.euromechflu.2021.05.001. Epub 2021 May 10.
The present outbreak enables the researchers from fluid mechanics to widen the understanding of expelling respiratory liquids from a unique perspective to diminish the persistence of COVID-19. This article focuses on uncovering the instability mechanism responsible for forming droplets and aerosols during respiratory events such as breathing, talking, coughing and sneezing. We illustrate a mathematical framework by revisiting the model (Vadivukkarasan and Panchagnula, 2017) and show the associated instabilities during respiratory events. We envisage the combined Rayleigh-Taylor-Kelvin-Helmholtz (R-T-K-H) model as a robust tool for respiratory events. This study highlights the distinct possibility of respiratory droplet formation over multiple instabilities and provides a fundamental understanding. We present the different dominant modes through a ternary phase diagram for three-dimensional numbers (Bond number and Weber numbers). Furthermore, this model can be extended phenomenologically to viscous fluids to satisfy mucus and saliva in the respiratory liquids.
当前的疫情使流体力学领域的研究人员能够从独特视角拓宽对呼出呼吸道液体的理解,以减少新冠病毒的传播。本文聚焦于揭示在呼吸、交谈、咳嗽和打喷嚏等呼吸事件中形成飞沫和气溶胶的不稳定机制。我们通过回顾模型(Vadivukkarasan和Panchagnula,2017)阐述了一个数学框架,并展示了呼吸事件中的相关不稳定性。我们设想瑞利 - 泰勒 - 开尔文 - 亥姆霍兹(R - T - K - H)组合模型是用于呼吸事件的有力工具。本研究突出了在多种不稳定性情况下形成呼吸道飞沫的显著可能性,并提供了基本认识。我们通过三维数(邦德数和韦伯数)的三元相图展示了不同的主导模式。此外,该模型可以从现象学角度扩展到粘性流体,以适用于呼吸道液体中的黏液和唾液。