Suppr超能文献

活性氧相关的头孢他啶耐药性是由丙酮酸循环紊乱引起的,并可被铁逆转。

Reactive Oxygen Species-Related Ceftazidime Resistance Is Caused by the Pyruvate Cycle Perturbation and Reverted by Fe in .

作者信息

Ye Jinzhou, Su Yubin, Peng Xuanxian, Li Hui

机构信息

Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China.

Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China.

出版信息

Front Microbiol. 2021 Apr 28;12:654783. doi: 10.3389/fmicb.2021.654783. eCollection 2021.

Abstract

Reactive oxygen species (ROS) are related to antibiotic resistance and have been reported in bacteria. However, whether ROS contribute to ceftazidime resistance and plays a role in ceftazidime-mediated killing is unknown. The present study showed lower ROS production in ceftazidime-resistant (LTB4-R ) than that in LTB4-sensitive (LTB4-S), two isogenic LTB4 strains, which was related to bacterial viability in the presence of ceftazidime. Consistently, ROS promoter Fe and inhibitor thiourea elevated and reduced the ceftazidime-mediated killing, respectively. Further investigation indicated that the reduction of ROS is related to inactivation of the pyruvate cycle, which provides sources for ROS biosynthesis, but not superoxide dismutase (SOD) and catalase (CAT), which degrade ROS. Interestingly, Fe promoted the P cycle, increased ROS biosynthesis, and thereby promoted ceftazidime-mediated killing. The Fe-induced potentiation is generalizable to cephalosporins and clinically isolated multidrug-resistant pathogens. These results show that ROS play a role in bacterial resistance and sensitivity to ceftazidime. More importantly, the present study reveals a previously unknown mechanism that Fe elevates ROS production via promoting the P cycle.

摘要

活性氧(ROS)与抗生素耐药性有关,并且在细菌中已有报道。然而,ROS是否导致对头孢他啶的耐药性以及在头孢他啶介导的杀菌过程中发挥作用尚不清楚。本研究表明,在两种同源的LTB4菌株中,耐头孢他啶的(LTB4-R)菌株比LTB4敏感的(LTB4-S)菌株产生的ROS更低,这与头孢他啶存在时的细菌活力有关。一致地,ROS促进剂铁和抑制剂硫脲分别提高和降低了头孢他啶介导的杀菌作用。进一步研究表明,ROS的减少与丙酮酸循环的失活有关,丙酮酸循环为ROS生物合成提供来源,而不是与降解ROS的超氧化物歧化酶(SOD)和过氧化氢酶(CAT)有关。有趣的是,铁促进了P循环,增加了ROS生物合成,从而促进了头孢他啶介导的杀菌作用。铁诱导的增效作用可推广到头孢菌素和临床分离的多重耐药病原体。这些结果表明,ROS在细菌对头孢他啶的耐药性和敏感性中发挥作用。更重要的是,本研究揭示了一种以前未知的机制,即铁通过促进P循环提高ROS的产生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/276d/8113649/6e95a6132437/fmicb-12-654783-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验