Donoso Raúl A, González-Toro Fabián, Pérez-Pantoja Danilo
Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Santiago, Chile.
Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile.
Comput Struct Biotechnol J. 2021 Apr 16;19:2160-2169. doi: 10.1016/j.csbj.2021.04.017. eCollection 2021.
Furans represent a class of promising chemicals, since they constitute valuable intermediates in conversion of biomass into sustainable products intended to replace petroleum-derivatives. Conversely, generation of furfural and 5-hydroxymethylfurfural (HMF) as by-products in lignocellulosic hydrolysates is undesirable due its inhibitory effect over fermentative microorganisms. Therefore, the search for furans-metabolizing bacteria has gained increasing attention since they are valuable tools to solve these challenging issues. A few bacterial species have been described at genetic level, leading to a proposed HMF pathway encoded by a set of genes termed /, although some enzymatic functions are still elusive. In this work we performed a genomic analysis of major subunits of furoyl-CoA dehydrogenase orthologues, revealing that the furoic acid catabolic route, key intermediate in HMF biodegradation, is widespread in proteobacterial species. Additionally, presence/absence profiles of / genes in selected proteobacterial strains suggest parallel and/or complementary roles of enzymes with previously unclear function that could be key in HMF conversion. The furans utilization pattern of selected strains harboring different / gene sets provided additional support for bioinformatic predictions of the relevance of some enzymes. On the other hand, at least three different types of transporter systems are clustered with / genes, whose presence is mutually exclusive, suggesting a core and parallel role in furans transport in Proteobacteria. This study expands the number of bacteria that could be recruited in biotechnological processes for furans biodetoxification and predicts a core set of genes required to establish a functional HMF pathway in heterologous hosts for metabolic engineering endeavors.
呋喃是一类很有前景的化学品,因为它们是将生物质转化为旨在替代石油衍生物的可持续产品过程中的重要中间体。相反,在木质纤维素水解产物中作为副产物生成糠醛和5-羟甲基糠醛(HMF)是不理想的,因为它们对发酵微生物具有抑制作用。因此,寻找能够代谢呋喃的细菌越来越受到关注,因为它们是解决这些挑战性问题的宝贵工具。在基因层面已经描述了一些细菌物种,由此提出了一条由一组称为/的基因编码的HMF途径,尽管一些酶的功能仍然不清楚。在这项工作中,我们对糠酰辅酶A脱氢酶直系同源物的主要亚基进行了基因组分析,结果表明,作为HMF生物降解关键中间体的糠酸分解代谢途径在变形菌门物种中广泛存在。此外,所选变形菌门菌株中/基因的存在/缺失情况表明,功能先前不明的酶具有平行和/或互补作用,这可能是HMF转化的关键。具有不同/基因集的所选菌株的呋喃利用模式为一些酶相关性的生物信息学预测提供了额外支持。另一方面,至少有三种不同类型的转运系统与/基因聚集在一起,它们的存在相互排斥,这表明它们在变形菌门中呋喃运输中具有核心和平行作用。这项研究增加了可用于呋喃生物解毒生物技术过程的细菌数量,并预测了在异源宿主中建立功能性HMF途径以进行代谢工程所需的一组核心基因。