Suppr超能文献

一种双功能亚胺基磷烷方酰胺催化对映选择性合成氢喹唑啉的分子内氮杂-Michael反应与α,β-不饱和酯。

A bifunctional iminophosphorane squaramide catalyzed enantioselective synthesis of hydroquinazolines intramolecular aza-Michael reaction to α,β-unsaturated esters.

作者信息

Su Guanglong, Thomson Connor J, Yamazaki Ken, Rozsar Daniel, Christensen Kirsten E, Hamlin Trevor A, Dixon Darren J

机构信息

Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK

Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam De Boelelaan 1083, 1081 HV Amsterdam The Netherlands

出版信息

Chem Sci. 2021 Mar 18;12(17):6064-6072. doi: 10.1039/d1sc00856k.

Abstract

An efficient synthesis of enantioenriched hydroquinazoline cores a novel bifunctional iminophosphorane squaramide catalyzed intramolecular aza-Michael reaction of urea-linked α,β-unsaturated esters is described. The methodology exhibits a high degree of functional group tolerance around the forming hydroquinazoline aryl core and wide structural variance on the nucleophilic N atom of the urea moiety. Excellent yields (up to 99%) and high enantioselectivities (up to 97 : 3 er) using both aromatic and less acidic aliphatic ureas were realized. The potential industrial applicability of the transformation was demonstrated in a 20 mmol scale-up experiment using an adjusted catalyst loading of 2 mol%. The origin of enantioselectivity and reactivity enhancement provided by the squaramide motif has been uncovered computationally using density functional theory (DFT) calculations, combined with the activation strain model (ASM) and energy decomposition analysis (EDA).

摘要

描述了一种对映体富集的氢喹唑啉核心的高效合成方法,即一种新型双功能亚胺基膦方酰胺催化的尿素连接的α,β-不饱和酯的分子内氮杂-Michael反应。该方法在形成的氢喹唑啉芳基核心周围表现出高度的官能团耐受性,并且在尿素部分的亲核氮原子上具有广泛的结构变化。使用芳香族和酸性较弱的脂肪族尿素均实现了优异的产率(高达99%)和高对映选择性(高达97:3 er)。在20 mmol的放大实验中,使用2 mol%的调整催化剂负载量证明了该转化反应的潜在工业适用性。通过密度泛函理论(DFT)计算,结合活化应变模型(ASM)和能量分解分析(EDA),从计算上揭示了方酰胺基序提供对映选择性和反应活性增强的原因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4108/8098679/38eca7d2c118/d1sc00856k-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验