Alsancak-Koca Sezen, Çamlısoy Yeşim, Bakırcı İrem, Işık Murat, Çelebi-Ölçüm Nihan, Tanyeli Cihangir
Department of Chemical Engineering, Yeditepe University, 34755 İstanbul, Türkiye.
Department of Chemistry, Middle East Technical University, 06800 Ankara, Türkiye.
J Am Chem Soc. 2025 Mar 26;147(12):10078-10087. doi: 10.1021/jacs.4c10634. Epub 2025 Mar 11.
Asymmetric organocatalysis by bifunctional acid- and base-type small organic molecules has emerged as a promising way to enhance stereoselective organic transformations since the beginning of this millennium. Takemoto's -amine/thiourea catalyst, an archetype in these endeavors, has encouraged many to design new multifunctional alternatives. However, the discovery of efficient catalysts in a library of thousands of candidates containing the desired functionalities in their structures remains a great challenge both synthetically and computationally. We, toward these ends, developed a computational protocol (CIPOC─Computational Identification of POtential (Organo)Catalysts), which discovered a chiral 2-aminoDMAP/urea catalyst among 1600 multifunctional catalyst candidates enabling conjugate addition of malonates to -β-nitroalkenes rapidly (in a few hours) with exquisite selectivities and yields, producing superior results than that of Takemoto's. The unique activity of this chiral 2-aminoDMAP/urea is attributed to the dual function of the 2-aminoDMAP unit (double H-bonding and π-stacking interactions) in addition to the exceptional performance of the urea unit compared to thiourea, as a result of a lower energetic penalty required to distort the catalyst to its active conformation to provide optimal catalytic interactions.
自本世纪初以来,由双功能酸型和碱型小有机分子进行的不对称有机催化已成为增强立体选择性有机转化的一种有前途的方法。武本的-胺/硫脲催化剂是这些研究中的一个原型,它促使许多人设计新的多功能替代物。然而,在数千种结构中含有所需功能的候选物库中发现高效催化剂,在合成和计算方面仍然是一个巨大的挑战。为此,我们开发了一种计算方案(CIPOC——潜在(有机)催化剂的计算识别),该方案在1600种多功能催化剂候选物中发现了一种手性2-氨基DMAP/脲催化剂,它能使丙二酸酯快速(在几小时内)与-β-硝基烯烃进行共轭加成,具有极高的选择性和产率,产生比武本催化剂更好的结果。这种手性2-氨基DMAP/脲的独特活性归因于2-氨基DMAP单元的双重功能(双氢键和π-堆积相互作用),以及与硫脲相比脲单元的优异性能,这是因为将催化剂扭曲成其活性构象以提供最佳催化相互作用所需的能量代价较低。